نتایج جستجو برای: خودریختی غیر داخلی
تعداد نتایج: 95423 فیلتر نتایج به سال:
چکیده ندارد.
خودریختی ? از گروه g را یک خودریختی مرکزی گوییم هرگاه ? بر عناصر گروه g/z(g) همانی القا کند. به عبارت دیگر برای هر عنصر g از g، g-1 ?(g) عنصری از مرکز g باشد. مجموعه ی همه ی خودریختی های مرکزی گروه g را با نماد autc(g) نمایش می دهیم. این مجموعه یک زیرگروه نرمال از گروه aut(g) تشکیل می دهد. اگر g یک گروه آبلی باشد آنگاه autc(g) با aut(g) یکسان خواهد بود. گروه خودریختی مرکزی یک گروه متناهی در بح...
محاسبه مرتبه یاتعیین ساختار گروه خودریختی ها در توسیع گروه ها حایز اهمیت است که می توان معین کرد از مرتبه معلوم چند گروه وجود دارد. اما غالبا این مسئله مشکل است یکی از اساسی ترین رهیافت ها به ساختار یا مرتبه گروه خودریختی ها حل همان مسئله برای گروه خودریختی های مرکزی است که زیرگروهی از گروه خودریختی ها است. در این پایان نامه برای گروه های به طور محض غیرآبلی نشان می دهیم که گروه خودریختی های مرک...
هدف از این پایان نامه مطالعه تأثیر مرکزساز(?) c_g روی زیرگروه جابه جاگر [g, ?] است, به خصوص زمانی که g گروهی چنددوری یا دوآبلی و ? یک خودریختی از گروه g باشد. فرض کنید g یک گروه چنددوری و ? یک خودریختی از g باشد. در این پایان نامه نشان داده می شود که اگر ? از مرتبه ی 2 و (?) c_g متناهی باشد آنگاه g/[g, ? ] و ?[g,? ] ?^?نیز متناهی اند. همچنین ثابت می شود که اگرg...
در این رساله، جبرهای که توسط خودتوان هایشان تولید می شوند را مطالعه و احکامی در این جبرها بیان و اثبات می کنیم. سپس اشتقاق های موضعی و خودریختی های 2-موضعی ، را روی این جبرها تعریف و بررسی می کنیم. با فرض این که l یک شبکه زیرفضایی جابجایی و m یک algl-مدول باناخ است ثابت می کنیم هر اشتقاق موضعی کراندار از algl به m یک اشتقاق است و اگر a یک زیر جبر از فون- نویمان m باشد هر اشتقاق موضعی از a به m ...
فزضی اّ: تذ یٍتاب تاشذ یًش فزض ک یٌذ l(g) یک گز g فزضی 1( فزض ک یٌذ ( ) [ , ( ( ))] ( ) e g g c var g aut g ? . در اییط رَت تذ یٍتاب است؛ var(g) ) الف . var(g) ? hom(g e(g),l(g)) تاتذار تاشذ، آ گًا g e(g) ب(اگز است. در اییط رَت e(g) هشو لَ در l(g)ِ یک گز تاشذ تغ رَیک g فزضی 2( فزض ک یٌذ var(g) ? hom(g e(g),l(g)) . یک گز تغ رَ هحض غیز آتلی هت اٌ یّ تاشذ. در اییط رَت g فزضی 3( فزض ک یٌذ var(g) ? hom(g,l(g...
This article has no abstract.
در این پایان نامه برای گروه جابجایی موضعاً فشرده ی ، به بررسی زیرفضاهای تحت انتقال پایای می پردازیم. همچنین یک تابع در فضای اصلی تحت انتقال پایا پیدا می کنیم به طوری که انتقال هایش یک قاب پارسوال باشد و نشان می دهیم هر فضای تحت انتقال پایا را می توان به صورت جمع متعامد زیرفضاهایی نوشت که هر کدام از این زیرفضاها توسط یک تابع منحصر به فرد تولید می شوند که انتقال های آن تابع یک قاب پارسوال می باشد....
فرض کنید g یک گروه متناهی باشد و را یک خودریـختی از مرتبه عدد اول p از گروه متناهی g در نظر بگیرید و را زیرگروهنقطهثابت از آن در نظر میگیریم. با استفاده از قضیه کلاسیک تامپسون داریم اگــر یک خودریختی منظم باشد (یا بطور معادل ) آنگاه g پوچتوان است و همچنین نشان داد که اگرهر تقریبا منظم باشد آنگاه g نیز باید تقریبا پوچتوان باشد. به عبارتی اگر آنگاه g یک زیر گـــــــروه پوچتوان از شاخص کراندار...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید