نتایج جستجو برای: جبر مختلط
تعداد نتایج: 4794 فیلتر نتایج به سال:
در سال 1990، وینستین و کرانت ساختارهای دیراک را به منظور یکی کردن منیفلدهای پواسن و منیفلدهای پیش همتافته معرفی نمودند. یپی ساختارهای مختلط تعمیم یافته توسط هیتچین مطرح شدند و جوالتری در رساله دکتری خود به استفاده از آن در جهت یکی کردن هندسه و همتافته هندسه مختلط پرداخت. در این پایان نامه ساختارهای مختلط قانونمند روی کلاف مماس تعمیم یافته tm t*m از منیفلد هموار m و رابطه آن با متر ریمانی m را ب...
فرض کنیم a(x) جبر یکنواخت متشکل از کلیه توابع مختلط مقدار پیوسته بر مجموعه فشرده x باشد که بر intx تحلیلی اند. برای هر 1 جبر لیپشیتس از مرتبه a را که با lip(x,a) نمایش داده می شود به صورت زیر تعریف می کنیم: حال تعریف می کنیم lipa(x,a)=lip(x,a) n a(x) و برای هر x تام و فشرده lipn(x,a) را جبر تمام توابع مختلط مقدار بر x می گیریم که مشتقات آنها تا مرتبه n ام بر x موجود و در (x,a)lip قرار دارند. ج...
ما در این پایان نامه فضاهای عملگری، جبرهای عملگری، جبرهای باناخ دوگان کاملا انقباضی و همچنین درون یابی فضاهای باناخ و فضاهای عملگری را به دو شکل حقیقی و مختلط مطالعه می کنیم و به کمک کاربردهای این مفاهیم نشان خواهیم داد که هر جبر باناخ دوگان کاملا انقباضی با زیر فضای ضعیف-بسته ای از فضای عملگری عملگرهای خطی کاملا کراندار روی یک فضای عملگری انعکاسی، کاملا ایزومتری است.
اگر ? نگاشت جمعی پوشا بین دو جبر عملگری باشد که در رابطه خاصی صدق می کند تحت شرایط خاص نشان می دهیم ? یک همومورفیسم جردن ضرب شده با یک عضو مرکزی است. در حالت خاص اگر k و h دو فضای هیلبرت با بعد نامتناهی(حقیقی یا مختلط) باشند(a=b(hو(b=b(kآنگاه عدد ثابت غیر صفر c و نگاشت وارونپذیر خطی یا مزدوج خطی u از h به k وجود دارند که در شرط خاصی صدق می کند.
فرض می کنیم (b(x جبر باناخ همه ی عملگرهای خطی کران دار روی فضای باناخ مختلط xباشد. در این پایان نامه نگاشت های جمعی و خطی قویاَ حافظ انواع معکوس پذیری خصوصاَ معکوس پذیری تعمیم یافته را مورد بررسی قرار می دهیم و از اول بودن و مرکزی بودن (b(x استفاده کرده و نگاشت های خطی و جمعی یک دار، پیوسته و دوسو را دسته بندی می کنیم.
مطالعه فضای فینسلر اهمیت بسیاری در فیزیک و زیست شناسی دارد. بنابراین بررسی مترهای فینسلر بخصوص روی منیفلدهای همگن از جایگاه ویژه ای برخوردار است در این پایان نامه به بررسی مقاله ای از دنگ 1 و هوو 2 در زمینه فضاهای فینسلر مختلط همگن پرداخته می شود. در ابتدا نشان می دهند هر فضای فینسلر مختلط همگن می تواند بصورت فضای خارج قسمتی یک گروه لی با ساختار مختلط ناوردار نوشته شود که متر فینسلر مختلط ناورد...
فرض کنیم b(h) جبر عملگرهای کراندار روی فضای هیلبرت مختلط h با dim h > 1 باشد.ثابت می کنیم نگاشت پوشای ? روی b(h) حافظ تصویر ضرب ناصفر است اگر و فقط اگر یک عملگر یکانی یا پادیکانی u روی h و ثابت c با شرط c^2 = 1 موجود باشند که برای هر a عضو b(h) داشته باشیم ?(a) = cu^*au. نتیجه مشابهی برای نگاشت هایی که ضرب سه تایی جردن را حفظ می کنند بدست می آوریم.
هرگاه b(h) جبر همه عملگرهای خطی کراندار روی فضای مختلط هیلبرت نامتناهی البعد h باشد فرض می کنیم عملگر یک نگاشت پوشا باشد اکنون برای هر خواهیم داشت : در این صورت به یکی از دو فرم زیر است : که و و t یک عملگر خطی معکوس پذیر پیوسته بر روی h است و یا به صورت که و و t یک عملگر خطی معکوس پذیر پیوسته بر روی h است.
پایان نامه حاضر به صورت زیر تنظیم شده است. در فصل اول تعاریف و نتایج مقدماتی آورده شده است. در فصل دوم اشتقاقهای -* ژردان روی -*حلقه های تعریف و شکل کلی آنها برای جبر عملگر استاندارد روی یک فضای هیلبیرتی به صورت زیر ثابت گردیه است: اگر h یک فضای هیلبرتی مختلط یا حقیقی با بعد بزرگتر از یک و ِa b(h) عملگر استاندارد باشد، آنگاه هر اشتقاق -*ژردان j: a->b(h) به صورت j(a)=at-...
موضوع این پایان نامه ، کوانتش مشاهده پذیر های کلاسیکی برای ذره جرم دار مربوط به فضای دوسیتر 1+1 روی حلقه مختلط می باشد . فضای دوسیتر 1+1 را می توان به صورت یک هیپربولوئید در فضای مینکوفسکی سه بعدی تجسم نمود . یکی از مباحث جالب در این فضا ، کوانتش مشاهده پذیر های کلاسیکی به روش حالت های همدوس می باشد . در این روش ، ابتدا فضای فاز مربوط به هیپربولوئید را که فضای کتانژانت مربوط به یک حلقه است تعی...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید