نتایج جستجو برای: الگوریتم mcmc

تعداد نتایج: 27113  

2017
Yichuan Zhang

Markov chain Monte Carlo (MCMC) is one of the most popular statistical inference methods in machine learning. Recent work shows that a significant improvement of the statistical efficiency of MCMC on complex distributions can be achieved by exploiting geometric properties of the target distribution. This is known as geometric MCMC. However, many such methods, like Riemannian manifold Hamiltonia...

Journal: :IEEE Transactions on Energy Conversion 2008

Journal: :Journal of the American Statistical Association 2018

2009
Roy Levy

Markov chain Monte Carlo MCMC estimation strategies represent a powerful approach to estimation in psychometric models. Popular MCMC samplers and their alignment with Bayesian approaches to modeling are discussed. Key historical and current developments of MCMC are surveyed, emphasizing how MCMC allows the researcher to overcome the limitations of other estimation paradigms, facilitates the est...

ژورنال: :مهندسی مالی و مدیریت اوراق بهادار 2012
رسول سجاد محسن عسگری

در سال های اخیر علاقه فزاینده ای به مطالعه ویژگی های غیرخطی در سری های زمانی مالی و اقتصادی در سطح کلان، شکل گرفته است که دلیل آن را می توان در امکان بروز نتایج و تحلیل های گمراه کننده با درنظر نگرفتن رفتار غیرخطی در محاسبات، و همچنین بررسی روندهای زمانی، تاثیرگذاری شوک های ساختاری و تغییر ویژگی های رفتاری این سری ها در طول زمان، جستجو کرد. استفاده از آزمون های رایج اقتصادسنجی بر این موضوع دلال...

2010
Arthur U. Asuncion Qiang Liu Alexander T. Ihler Padhraic Smyth

Learning undirected graphical models such as Markov random fields is an important machine learning task with applications in many domains. Since it is usually intractable to learn these models exactly, various approximate learning techniques have been developed, such as contrastive divergence (CD) and Markov chain Monte Carlo maximum likelihood estimation (MCMC-MLE). In this paper, we introduce...

2002
WILLIAM A. LINK

Markov chain Monte Carlo (MCMC) is a statistical innovation methodology that allows researchers to fit far more complex models to data than is feasible using conventional methods. Despite its widespread use in a variety of scientific fields, MCMC appears to be underutilized in wildlife applications. This may be due to a misconception that MCMC requires the adoption of a subjective Bayesian anal...

Journal: :Statistics and Computing 2016
Paul Fearnhead Loukia Meligkotsidou

Particle MCMC involves using a particle filter within an MCMC algorithm. For inference of a model which involves an unobserved stochastic process, the standard implementation uses the particle filter to propose new values for the stochastic process, and MCMC moves to propose new values for the parameters. We show how particle MCMC can be generalised beyond this. Our key idea is to introduce new...

Journal: :Journal of Computational Physics 2016

Journal: :Stochastics and Dynamics 2008

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید