نتایج جستجو برای: zero divisor graph ideal
تعداد نتایج: 424665 فیلتر نتایج به سال:
Let R be a commutative ring with identity and M an R-module. In this paper, we associate a graph to M, sayΓ(RM), such that when M=R, Γ(RM) coincide with the zero-divisor graph of R. Many well-known results by D.F. Anderson and P.S. Livingston have been generalized for Γ(RM). We Will show that Γ(RM) is connected withdiam Γ(RM)≤ 3 and if Γ(RM) contains a cycle, then Γ(RM)≤4. We will also show tha...
In a manner analogous to a commutative ring, the L-ideal-based L-zero-divisor graph of a commutative ring R can be defined as the undirected graph Γ(μ) for some L-ideal μ of R. The basic properties and possible structures of the graph Γ(μ) are studied.
Let R be a commutative ring with nonzero identity and let I be an ideal of R. The zero-divisor graph of R with respect to I, denoted by ΓI(R), is the graph whose vertices are the set {x ∈ R \ I| xy ∈ I for some y ∈ R \ I} with distinct vertices x and y adjacent if and only if xy ∈ I. In the case I = 0, Γ0(R), denoted by Γ(R), is the zero-divisor graph which has well known results in the literat...
let $m$ be an $r$-module and $0 neq fin m^*={rm hom}(m,r)$. we associate an undirected graph $gf$ to $m$ in which non-zero elements $x$ and $y$ of $m$ are adjacent provided that $xf(y)=0$ or $yf(x)=0$. weobserve that over a commutative ring $r$, $gf$ is connected anddiam$(gf)leq 3$. moreover, if $gamma (m)$ contains a cycle,then $mbox{gr}(gf)leq 4$. furthermore if $|gf|geq 1$, then$gf$ is finit...
Let N be a near-ring. In this paper, we associate a graph corresponding to the 3-prime radical I of N , denoted by ΓI(N). Further we obtain certain topological properties of Spec(N), the spectrum of 3-prime ideals of N and graph theoretic properties of ΓI(N). Using these properties, we discuss dominating sets and connected dominating sets of ΓI(N).
Let $R$ be a commutative ring with identity. An ideal $I$ of a ring $R$is called an annihilating ideal if there exists $rin Rsetminus {0}$ such that $Ir=(0)$ and an ideal $I$ of$R$ is called an essential ideal if $I$ has non-zero intersectionwith every other non-zero ideal of $R$. Thesum-annihilating essential ideal graph of $R$, denoted by $mathcal{AE}_R$, isa graph whose vertex set is the set...
In a manner analogous to a commutative ring, the idealbased zero-divisor graph of a commutative semiring R can be defined as the undirected graph ΓI(R) for some ideal I of R. The properties and possible structures of the graph ΓI (R) are studied.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید