نتایج جستجو برای: vertex coloring
تعداد نتایج: 48615 فیلتر نتایج به سال:
In graph coloring, one assigns a color to each vertex of a graph so that neighboring vertices get different colors. We shall talk about a bioconsensus problem relating to graph coloring and discuss the applicability of the ideas to the DNA physical mapping problem. In many applications of graph coloring, one gathers data about the acceptable colors at each vertex. A list coloring is a graph col...
An incidence of G consists of a vertex and one of its incident edge in G. The incidence coloring problem is a variation of vertex coloring problem. The problem is to find the minimum number (called incidence coloring number) of colors assigned to every incidence of G so that the adjacent incidences are not assigned the same color. In this paper, we propose a linear time algorithm for incidence-...
A coloring of a graph G = (V ,E) is a partition {V1, V2, . . . , Vk} of V into independent sets or color classes. A vertex v ∈ Vi is a Grundy vertex if it is adjacent to at least one vertex in each color class Vj for every j <i. A coloring is a Grundy coloring if every color class contains at least one Grundy vertex, and the Grundy number of a graph is the maximum number of colors in a Grundy c...
let $g$ be a connected graph of order $3$ or more and $c:e(g)rightarrowmathbb{z}_k$ ($kge 2$) a $k$-edge coloring of $g$ where adjacent edges may be colored the same. the color sum $s(v)$ of a vertex $v$ of $g$ is the sum in $mathbb{z}_k$ of the colors of the edges incident with $v.$ the $k$-edge coloring $c$ is a modular $k$-edge coloring of $g$ if $s(u)ne s(v)$ in $mathbb{z}_k$ for all pa...
This paper is concerned with the problem of supervised learning of deterministic finite state automata, in the technical sense of identification in the limit from complete data, by finding a minimal DFA consistent with the data (regular inference). We solve this problem by translating it in its entirety to a vertex coloring problem. Essentially, such a problem consists of two types of constrain...
We consider the question of computing the strong edge coloring, square graph coloring, and their generalization to coloring the k power of graphs. These problems have long been studied in discrete mathematics, and their “chaotic” behavior makes them interesting from an approximation algorithm perspective: For k = 1, it is well-known that vertex coloring is “hard” and edge coloring is “easy” in ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید