نتایج جستجو برای: vegetative organ

تعداد نتایج: 118488  

Journal: :The International journal of developmental biology 2005
Julia Weiss Luciana Delgado-Benarroch Marcos Egea-Cortines

Floral size is an ecologically important trait related to pollination success and genetic fitness. Independently of the sexual reproduction strategy, in many plants, floral size seems to be controlled by several genetic programs that are to some extent independent of vegetative growth. Flower size seems to be governed by at least two independent mechanisms, one controlling floral architecture t...

Journal: :Development 2004
Takuya Suzaki Makoto Sato Motoyuki Ashikari Masahiro Miyoshi Yasuo Nagato Hiro-Yuki Hirano

The regulation of floral organ number is closely associated with floral meristem size. Mutations in the gene FLORAL ORGAN NUMBER1 (FON1) cause enlargement of the floral meristem in Oryza sativa (rice), resulting in an increase in the number of all floral organs. Ectopic floral organs develop in the whorl of each organ and/or in the additional whorls that form. Inner floral organs are more sever...

2016
Francesco Reyes Theodore DeJong Pietro Franceschi Massimo Tagliavini Damiano Gianelle

Knowledge of seasonal maximum potential growth rates are important for assessing periods of resource limitations in fruit tree species. In this study we assessed the periods of resource limitation for vegetative (current year stems, and woody biomass) and reproductive (fruit) organs of a major agricultural crop: the apple tree. This was done by comparing relative growth rates (RGRs) of individu...

Journal: :Current Biology 1997
Julie Hofer Lynda Turner Roger Hellens Mike Ambrose Peter Matthews Anthony Michael Noel Ellis

BACKGROUND The vegetative phenotype of the pea mutant unifoliata (uni) is a simplification of the wild-type compound leaf to a single leaflet. Mutant uni plants are also self-sterile and the flowers resemble known floral meristem and organ identity mutants. In Antirrhinum and Arabidopsis, mutations in the floral meristem identity gene FLORICAULA/LEAFY (FLO/LFY) affect flower development alone, ...

2006
Fui-Ching Tan Steve M. Swain

doi: 10.1111/j.1399-3054.2006.00724.x Flowering is an integral developmental process in angiosperms, crucial to reproductive success and continuity of the species through time. Some angiosperms complete their life cycle within a year (annual plants), and others have a longer reproductive life, which is characterized by the generation of new flowering and vegetative shoots every year (perennial ...

2017
Li Yang Scott Poethig

The timing of the transitions between the juvenile and adult vegetative stages (vegetative phase change) is important for shoot maturation in plants. The juvenile and adult vegetative stages are defined by a difference in reproductive competence (incompetent versus competent), but they are also associated with a variety of other morphological and physiological differences. An evolutionarily con...

Journal: :Journal of medical ethics 2004
A Ravelingien F Mortier E Mortier I Kerremans J Braeckman

The transplantation of porcine organs to humans could in the future be a solution to the worldwide organ shortage, but is to date still highly experimental. Further research on the potential effects of crossing the species barrier is essential before clinical application is acceptable. However, many crucial questions on efficacy and safety will ultimately only be answered by well designed and c...

2002
George W. Haughn

Variation in plant shoot structure may be described as occurring through changes within a basic unit, the metamer. Using this terminology, the apical meristem of Arabidopsis produces three metameric types sequentially: type 1, rosette; type 2, coflorescence-bearing with bract; and type 3, flower-bearing without bract. We describe a mutant of Arabidopsis, Leafy, homozygous for a recessive allele...

Journal: :The Plant cell 1991
E. A. Schultz G. W. Haughn

Variation in plant shoot structure may be described as occurring through changes within a basic unit, the metamer. Using this terminology, the apical meristem of Arabidopsis produces three metameric types sequentially: type 1, rosette; type 2, coflorescence-bearing with bract; and type 3, flower-bearing without bract. We describe a mutant of Arabidopsis, Leafy, homozygous for a recessive allele...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید