نتایج جستجو برای: varying delays

تعداد نتایج: 191066  

2011
Yupei Lv Bo Zhou Qiankun Song

In this paper, the stability of neural networks with both impulses and time-varying delays on time scale is investigated, the existence of Delta derivative of time-varying delays is not assumed. By employing time scale calculous theory, free weighting matrix method and linear matrix inequality (LMI) technique, a delay-dependent sufficient condition is obtained to ensure the stability of equilib...

Journal: :IJCNS 2010
Tiecheng Zhang Hui Yu

The average consensus in undirected networks of multi-agent with both fixed and switching topology coupling multiple time-varying delays is studied. By using orthogonal transformation techniques, the original system can be turned into a reduced dimensional system and then LMI-based method can be applied conveniently. Convergence analysis is conducted by constructing Lyapunov-Krasovskii function...

Journal: :Chaos 2007
Yi-You Hou Teh-Lu Liao Chang-Hua Lien Jun-Juh Yan

The global exponential stability is investigated for neural networks with interval time-varying delays. Based on the Leibniz-Newton formula and linear matrix inequality technique, delay-dependent stability criteria are proposed to guarantee the exponential stability of neural networks with interval time-varying delays. Some numerical examples and comparisons are provided to show that the propos...

2013
Weiwei Zhang Chao Ge Hong Wang Qing Gong

This paper is concerned with the problem of asymptotic stability for linear systems with time-varying delays. With the introduction of delay-partition approach, some new delaydependent stability criteria are established and formulated in the form of linear matrix inequalities. Both constant time delays and time-varying delays have been taken into account. Numerical examples are given to demonst...

K. Meenakshi M. Syed Ali M. Usha N. Gunasekaran

This paper focuses on the problem of finite-time boundedness and finite-time passivity of discrete-time T-S fuzzy neural networks with time-varying delays. A suitable Lyapunov--Krasovskii functional(LKF) is established to derive sufficient condition for finite-time passivity of discrete-time T-S fuzzy neural networks. The dynamical system is transformed into a T-S fuzzy model with uncertain par...

Journal: :Automatica 2017
Frédéric Mazenc Michael Malisoff

We provide a new sequential predictors approach for the exponential stabilization of linear time-varying systems. Our method circumvents the problem of constructing and estimating distributed terms in the control laws, and allows arbitrarily large input delay bounds, pointwise time-varying input delays, and uncertainties. Instead of using distributed terms, our approach to handling longer delay...

This paper considers the problem of adaptive output feedback tracking control for a class of nonstrict-feedback nonlinear systems with unknown time-varying delays and unknown backlash-like hysteresis. Fuzzy logic systems are used to estimate the unknown nonlinear functions. Based on the Lyapunov–Krasovskii method, the control scheme is constructed by using the backstepping and adaptive techniqu...

2008
C.-Y. Kao

This manuscript concerns robust stability analysis of discrete-time LTI systems with varying time delays. The stability problem is treated in the Integral Quadratic Constraint (IQC) framework. The novelty and main contribution of the manuscript is the integral quadratic constraint characterization of the discrete-time time-varying delay operator. The characterization enables the IQC analysis to...

2012
Xie Wei

The control of discrete systems with time-varying delays has been researched extensively in the last few decades. Especially in recent years there are increasing interests in discrete-time systems with delays due to the emerging fields of networked control and network congestion control (Altman & Basar 1999; Sichitiu et al., 2003; Boukas & Liu 2001). Stability problem for linear discrete-time s...

2006
El Houssaine Tissir

The Robust control problem for time varying uncertain linear systems with non-commensurate time varying state and control delays is studied. By solving LMIs we design robust controller, via an observer-based output feedback, which stabilizes the system and reduces the effect of the disturbance input on the controlled output for all admissible uncertainties. The results depend on the time deriva...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->