نتایج جستجو برای: upper domatic number
تعداد نتایج: 1344288 فیلتر نتایج به سال:
for every positive integer k, a set s of vertices in a graph g = (v;e) is a k- tuple dominating set of g if every vertex of v -s is adjacent to at least k vertices and every vertex of s is adjacent to at least k - 1 vertices in s. the minimum cardinality of a k-tuple dominating set of g is the k-tuple domination number of g. when k = 1, a k-tuple domination number is the well-studied domination...
Let D be a finite and simple digraph with vertex set V (D), and let f : V (D)→ {−1,1} be a two-valued function. If k ≥ 1 is an integer and ∑x∈N−[v] f (x) ≥ k for each v∈V (D), where N−[v] consists of v and all vertices of D from which arcs go into v, then f is a signed k-dominating function on D. A set { f1, f2, . . . , fd} of distinct signed k-dominating functions of D with the property that ∑...
For a positive integer k, a k-rainbow dominating function of a graph G is a function f from the vertex set V (G) to the set of all subsets of the set {1, 2, . . . , k} such that for any vertex v ∈ V (G) with f(v) = ∅ the condition ⋃ u∈N(v) f(u) = {1, 2, . . . , k} is fulfilled, where N(v) is the neighborhood of v. The 1-rainbow domination is the same as the ordinary domination. A set {f1, f2, ....
An edge dominating set in a graph G is a set of edges D such that every edge not in D is adjacent to an edge of D. An edge domatic partition of a graph C=(V, E) is a collection of pairwise-disjoint edge dominating sets of G whose union is E. The maximum size of an edge domatic partition of G is called the edge domatic number. In this paper, we study the edge domatic number of the complete parti...
We show that the number of minimal dominating sets in a graph on n vertices is at most 1.7697, thus improving on the trivial O(2n/√n) bound. Our result makes use of the measure and conquer technique from exact algorithms, and can be easily turned into an O(1.7697) listing algorithm. Based on this result, we derive an O(2.8805n) algorithm for the domatic number problem, and an O(1.5780) algorith...
Roman dominating function} on a digraph $D$ with vertex set $V(D)$ is a labeling$fcolon V(D)to {0, 1, 2}$such that every vertex with label $0$ has an in-neighbor with label $2$. A set ${f_1,f_2,ldots,f_d}$ ofRoman dominating functions on $D$ with the property that $sum_{i=1}^d f_i(v)le 2$ for each $vin V(D)$,is called a {em Roman dominating family} (of functions) on $D$....
Let δ(G), ∆(G) and γ(G) be the minimum degree, maximum degree and domination number of a graph G = (V (G), E(G)), respectively. A partition of V (G), all of whose classes are dominating sets in G, is called a domatic partition of G. The maximum number of classes of a domatic partition of G is called the domatic number of G, denoted d(G). It is well known that d(G) ≤ δ(G)+1, d(G)γ(G) ≤ |V (G)| [...
The domatic number d(G) of a graph G = (V,E) is the maximum order of a partition of V into dominating sets. Such a partition Π = {D1, D2, . . . , Dd} is called a minimal dominating d-partition if Π contains the maximum number of minimal dominating sets, where the maximum is taken over all d-partitions of G. The minimal dominating d-partition number Λ(G) is the number of minimal dominating sets ...
Let G be a simple graph without isolated vertices with vertex set V (G) and edge set E(G) and let k be a positive integer. A function f : E(G) → {−1, 1} is said to be a signed star k-dominating function on G if ∑ e∈E(v) f(e) ≥ k for every vertex v of G, where E(v) = {uv ∈ E(G) | u ∈ N(v)}. A set {f1, f2, . . . , fd} of signed star k-dominating functions on G with the property that ∑d i=1 fi(e) ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید