نتایج جستجو برای: upper domatic number

تعداد نتایج: 1344288  

Journal: :caspian journal of mathematical sciences 2014
a. p. kazemi

for every positive integer k, a set s of vertices in a graph g = (v;e) is a k- tuple dominating set of g if every vertex of v -s is adjacent to at least k vertices and every vertex of s is adjacent to at least k - 1 vertices in s. the minimum cardinality of a k-tuple dominating set of g is the k-tuple domination number of g. when k = 1, a k-tuple domination number is the well-studied domination...

Journal: :Ars Comb. 2015
Odile Favaron Seyed Mahmoud Sheikholeslami Lutz Volkmann

Let D be a finite and simple digraph with vertex set V (D), and let f : V (D)→ {−1,1} be a two-valued function. If k ≥ 1 is an integer and ∑x∈N−[v] f (x) ≥ k for each v∈V (D), where N−[v] consists of v and all vertices of D from which arcs go into v, then f is a signed k-dominating function on D. A set { f1, f2, . . . , fd} of distinct signed k-dominating functions of D with the property that ∑...

Journal: :Appl. Math. Lett. 2011
Dirk Meierling Seyed Mahmoud Sheikholeslami Lutz Volkmann

For a positive integer k, a k-rainbow dominating function of a graph G is a function f from the vertex set V (G) to the set of all subsets of the set {1, 2, . . . , k} such that for any vertex v ∈ V (G) with f(v) = ∅ the condition ⋃ u∈N(v) f(u) = {1, 2, . . . , k} is fulfilled, where N(v) is the neighborhood of v. The 1-rainbow domination is the same as the ordinary domination. A set {f1, f2, ....

Journal: :Discrete Mathematics 1994
Bor-Liang Chen Hung-Lin Fu

An edge dominating set in a graph G is a set of edges D such that every edge not in D is adjacent to an edge of D. An edge domatic partition of a graph C=(V, E) is a collection of pairwise-disjoint edge dominating sets of G whose union is E. The maximum size of an edge domatic partition of G is called the edge domatic number. In this paper, we study the edge domatic number of the complete parti...

2005
Fedor V. Fomin Fabrizio Grandoni Artem V. Pyatkin Alexey A. Stepanov

We show that the number of minimal dominating sets in a graph on n vertices is at most 1.7697, thus improving on the trivial O(2n/√n) bound. Our result makes use of the measure and conquer technique from exact algorithms, and can be easily turned into an O(1.7697) listing algorithm. Based on this result, we derive an O(2.8805n) algorithm for the domatic number problem, and an O(1.5780) algorith...

Roman dominating function} on a digraph $D$ with vertex set $V(D)$ is a labeling$fcolon V(D)to {0, 1, 2}$such that every vertex with label $0$ has an in-neighbor with label $2$. A set ${f_1,f_2,ldots,f_d}$ ofRoman dominating functions on $D$ with the property that $sum_{i=1}^d f_i(v)le 2$ for each $vin V(D)$,is called a {em Roman dominating family} (of functions) on $D$....

2017
VLADIMIR SAMODIVKIN Peter Csikvari

Let δ(G), ∆(G) and γ(G) be the minimum degree, maximum degree and domination number of a graph G = (V (G), E(G)), respectively. A partition of V (G), all of whose classes are dominating sets in G, is called a domatic partition of G. The maximum number of classes of a domatic partition of G is called the domatic number of G, denoted d(G). It is well known that d(G) ≤ δ(G)+1, d(G)γ(G) ≤ |V (G)| [...

Journal: :Australasian J. Combinatorics 2012
S. Arumugam K. Raja Chandrasekar

The domatic number d(G) of a graph G = (V,E) is the maximum order of a partition of V into dominating sets. Such a partition Π = {D1, D2, . . . , Dd} is called a minimal dominating d-partition if Π contains the maximum number of minimal dominating sets, where the maximum is taken over all d-partitions of G. The minimal dominating d-partition number Λ(G) is the number of minimal dominating sets ...

Journal: :Contributions to Discrete Mathematics 2010
Seyed Mahmoud Sheikholeslami Lutz Volkmann

Let G be a simple graph without isolated vertices with vertex set V (G) and edge set E(G) and let k be a positive integer. A function f : E(G) → {−1, 1} is said to be a signed star k-dominating function on G if ∑ e∈E(v) f(e) ≥ k for every vertex v of G, where E(v) = {uv ∈ E(G) | u ∈ N(v)}. A set {f1, f2, . . . , fd} of signed star k-dominating functions on G with the property that ∑d i=1 fi(e) ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید