نتایج جستجو برای: uniformly tau_s

تعداد نتایج: 34001  

2003
R. Palais

• Positivity: N(v) ≥ 0 with equality if and only if v = 0. • Positive Homogeneity: N(αv) = |α|N(v). • Triangle Inequality: N(x1 + x2) ≤ N(x1) +N(x2). If N is a norm for V then we call ρ N (x1, x2) := N(x1−x2) the associated distance function (or metric) for V . A vector space V together with some a choice of norm is called a normed space, and the norm is usually denoted by ‖ ‖. If V is complete...

2007
V. Caselles A. Chambolle M. Novaga

We prove that if C ⊂ R is of class C and uniformly convex, then the Cheeger set of C is unique. The Cheeger set of C is the set which minimizes, inside C, the ratio perimeter over volume.

2015
Zhanfei Zuo Yi Huang Xiaochun Chen Feixiang Chen Zhengwen Tu

Recently, Chang, et al introduce the concept of total asymptotically nonexpansive mapping which contain the asymptotically nonexpansive mapping. The purpose of the paper is to analyze a three-step iterative scheme for total asymptotically nonexpansive mapping in uniformly convex hyperbolic spaces. Meanwhile, we obtain a ∆-convergence theorem of the three-step iterative scheme for total asymptot...

2012
N. J. KALTON

We give a general result on the behavior of spreading models in Banach spaces which coarse Lipschitz-embed into asymptotically uniformly convex spaces. We use this result to study the uniqueness of the uniform structure in p-sums of finite-dimensional spaces for 1 < p < ∞; in particular we give some new examples of spaces with unique uniform structure.

2001
M. RUDELSON

We prove that if a metric probability space with a usual concentration property embeds into a Banach space X, then X has a proportional Euclidean subspace. In particular, this yields a new characterization of weak cotype 2. We also find optimal lower estimates on embeddings spaces with concentration properties (i.e. uniformly convex spaces) into l ∞, thus providing an ”isomorphic” extension to ...

2005
E. Odell

We show that there exists a separable reflexive Banach space into which every separable uniformly convex Banach space isomorphically embeds. This solves a problem of J. Bourgain. We also give intrinsic characterizations of separable reflexive Banach spaces which embed into a reflexive space with a block q-Hilbertian and/or a block p-Besselian finite dimensional decomposition.

2013
Hans-Christoph Grunau Stephan Lenor

We prove uniform convexity of solutions to the capillarity boundary value problem for fixed boundary angle in (0, π/2) and strictly positive capillarity constant provided that the base domain Ω ⊂ R is sufficiently close to a disk in a suitable C-sense.

Journal: :J. Applied Mathematics 2012
Prasit Cholamjiak Suthep Suantai Yeol Je Cho

We introduce a Halpern-type iteration for a generalized mixed equilibrium problem in uniformly smooth and uniformly convex Banach spaces. Strong convergence theorems are also established in this paper. As applications, we apply our main result to mixed equilibrium, generalized equilibrium, and mixed variational inequality problems in Banach spaces. Finally, examples and numerical results are al...

Journal: :J. Global Optimization 2009
Liwei Li W. Song

We introduce an iterative procedure for finding a point in the zero set (a solution to 0 ∈ A(v) and v ∈ C) of an inverse-monotone or inverse strongly-monotone operator A on a nonempty closed convex subset C in a uniformly smooth and uniformly convex Banach space. We establish weak convergence results under suitable assumptions.

Journal: :J. Applied Mathematics 2012
Kamonrat Nammanee Suthep Suantai Prasit Cholamjiak

We introduce hybrid-iterative schemes for solving a system of the zero-finding problems of maximal monotone operators, the equilibrium problem, and the fixed point problem of weak relatively nonexpansive mappings. We then prove, in a uniformly smooth and uniformly convex Banach space, strong convergence theorems by using a shrinking projection method. We finally apply the obtained results to a ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید