نتایج جستجو برای: uniformly
تعداد نتایج: 33996 فیلتر نتایج به سال:
We prove that if a metric probability space with a usual concentration property embeds into a Banach space X, then X has a proportional Euclidean subspace. In particular, this yields a new characterization of weak cotype 2. We also find optimal lower estimates on embeddings spaces with concentration properties (i.e. uniformly convex spaces) into l ∞, thus providing an ”isomorphic” extension to ...
We show that there exists a separable reflexive Banach space into which every separable uniformly convex Banach space isomorphically embeds. This solves a problem of J. Bourgain. We also give intrinsic characterizations of separable reflexive Banach spaces which embed into a reflexive space with a block q-Hilbertian and/or a block p-Besselian finite dimensional decomposition.
We prove uniform convexity of solutions to the capillarity boundary value problem for fixed boundary angle in (0, π/2) and strictly positive capillarity constant provided that the base domain Ω ⊂ R is sufficiently close to a disk in a suitable C-sense.
We introduce a Halpern-type iteration for a generalized mixed equilibrium problem in uniformly smooth and uniformly convex Banach spaces. Strong convergence theorems are also established in this paper. As applications, we apply our main result to mixed equilibrium, generalized equilibrium, and mixed variational inequality problems in Banach spaces. Finally, examples and numerical results are al...
We introduce an iterative procedure for finding a point in the zero set (a solution to 0 ∈ A(v) and v ∈ C) of an inverse-monotone or inverse strongly-monotone operator A on a nonempty closed convex subset C in a uniformly smooth and uniformly convex Banach space. We establish weak convergence results under suitable assumptions.
We introduce hybrid-iterative schemes for solving a system of the zero-finding problems of maximal monotone operators, the equilibrium problem, and the fixed point problem of weak relatively nonexpansive mappings. We then prove, in a uniformly smooth and uniformly convex Banach space, strong convergence theorems by using a shrinking projection method. We finally apply the obtained results to a ...
We apply Preuss' concept of $mbbe$-connectedness to the categories of lattice-valued uniform convergence spaces and of lattice-valued uniform spaces. A space is uniformly $mbbe$-connected if the only uniformly continuous mappings from the space to a space in the class $mbbe$ are the constant mappings. We develop the basic theory for $mbbe$-connected sets, including the product theorem. Furtherm...
We prove that Hilbert geometries on uniformly convex Euclidean domains with C 2-boundaries are roughly isometric to the real hyperbolic spaces of corresponding dimension.
The purpose of this note is to present two elementary, but useful, facts concerning actions on uniformly convex spaces. We demonstrate how each of them can be used in an alternative proof of the triviality of the first Lp-cohomology of higher rank simple Lie groups, proved in [1]. Let G be a locally compact group with a compact generating set K ∋ 1, and let X be a complete Busemann non-positive...
Constructive properties of uniform convexity, strict convexity, near convexity, and metric convexity in real normed linear spaces are considered. Examples show that certain classical theorems, such as the existence of points of osculation, are constructively invalid. The methods used are in accord with principles introduced by Errett Bishop.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید