نتایج جستجو برای: trivariate garch model
تعداد نتایج: 2106669 فیلتر نتایج به سال:
This brief note offers an explicit algorithm for a multivariate GARCH model, called PC-GARCH, that requires only univariate GARCH estimation. It is suitable for problems with hundreds or even thousands of variables. PC-GARCH is compared to two other techniques of getting multivariate GARCH using univariate estimates.
In this paper, we take the advantage of high frequency data to develop option pricing model and select the Realized GARCH model to describe the volatility of assets, use NIG distribution to describe the distribution of underlying assets, and also build the Realized-GARCH-NIG model to price the option. Finally, we obtain the dynamic option pricing model based on the Realized-GARCH-NIG approach. ...
In this paper we propose a method to estimate the value-at-risk (VaR) of a portfolio based on a combination of time series, extreme value theory and copula fitting. Given multivariate financial data, we use a univariate ARMA-GARCH model for each return series. We then fit a generalized Pareto distribution to the tails of the residuals to model the distributions of marginal residuals, followed b...
Based on the trivariate reduction technique two different trivariate Bernoulli mixtures of univariate uniform distributions and their associated trivariate copulas with bivariate linear Spearman marginal copulas are considered. Mathematical characterizations of these Bernoulli mixture models are obtained. Since Bernoulli mixture trivariate reduction copulas are not compatible with all valid gra...
With the increase of wind power as a renewable energy source in many countries, wind speed forecasting has become more and more important to the planning of wind speed plants, the scheduling of dispatchable generation and tariffs in the day-ahead electricity market, and the operation of power systems. However, the uncertainty of wind speed makes troubles in them. For this reason, a wind speed f...
We define a copula process which describes the dependencies between arbitrarily many random variables independently of their marginal distributions. As an example, we develop a stochastic volatility model, Gaussian Copula Process Volatility (GCPV), to predict the latent standard deviations of a sequence of random variables. To make predictions we use Bayesian inference, with the Laplace approxi...
Many researchers use GARCH models to generate volatility forecasts. Using data on three major U.S. dollar exchange rates we show that such forecasts are too high in volatile periods. We argue that this is due to the high persistence of shocks in GARCH forecasts. To obtain more flexibility regarding volatility persistence, this paper generalizes the GARCH model by distinguishing two regimes with...
To date in literature, GARCH model has been described not suitable for non-linear foreign exchange series and therefore this paper proposes an Augmented GARCH model that could capture both linear and non-linear behavior of data. The properties of this new model is derived and found to have a minimum variance compared with GARCH model. We employ the use of Brock-DechertScheinkman (BDS) test stat...
The autoregressive conditional heteroskedasticity (ARCH) and generalized autoregressive conditional heteroskedasticity (GARCH) models take the dependency of the conditional second moments. The idea behind ARCH/GARCH model is quite intuitive. For ARCH models, past squared innovations describes the present squared volatility. For GARCH models, both squared innovations and the past squared volatil...
Background: In light of the latest global financial crisis and the ongoing sovereign debt crisis, accurate measuring of market losses has become a very current issue. One of the most popular risk measures is Value-at-Risk (VaR). Objectives: Our paper has two main purposes. The first is to test the relative performance of selected GARCH-type models in terms of their ability of delivering volatil...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید