نتایج جستجو برای: test semi
تعداد نتایج: 943546 فیلتر نتایج به سال:
In many real world applications we do not have access to fully-labeled training data, but only to a list of possible labels. This is the case, e.g., when learning visual classifiers from images downloaded from the web, using just their text captions or tags as learning oracles. In general, these problems can be very difficult. However most of the time there exist different implicit sources of i...
Lack of sufficient training data with exact ages is still a challenge for facial age estimation. To deal with such problem, a method called Label Distribution Learning (LDL) was proposed to utilize the neighboring ages while learning a particular age. Later, an adaptive version of LDL called ALDL was proposed to generate a proper label distribution for each age. However, the adaptation process ...
This paper describes an empirical study of high-performance dependency parsers based on a semi-supervised learning approach. We describe an extension of semisupervised structured conditional models (SS-SCMs) to the dependency parsing problem, whose framework is originally proposed in (Suzuki and Isozaki, 2008). Moreover, we introduce two extensions related to dependency parsing: The first exten...
this research study employed a mixed-methods approach to investigate the test takers’ perceptions and anx- iety in relation to an english language proficiency test called community english program (cep). this study also evaluated the direct and semi-direct modes for speaking module of this test. to this end, 300 eng- lish as foreign language (efl) students were recruited in the study as test ta...
We report an empirical study on the role of syntactic features in building a semisupervised named entity (NE) tagger. Our study addresses two questions: What types of syntactic features are suitable for extracting potential NEs to train a classifier in a semi-supervised setting? How good is the resulting NE classifier on testing instances dissimilar from its training data? Our study shows that ...
A major challenge in machine learning is covariate shift, i.e., the problem of training data and test data coming from different distributions. This paper studies the feasibility of tackling this problem by means of sparse filtering. We show that the sparse filtering algorithm intrinsically addresses this problem, but it has limited capacity for covariate shift adaptation. To overcome this limi...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید