نتایج جستجو برای: support vector regression svr

تعداد نتایج: 1103323  

Journal: :IEEE transactions on neural networks 2002
Chen-Chia Chuang Shun-Feng Su Jin-Tsong Jeng Chih-Ching Hsiao

Support vector regression (SVR) employs the support vector machine (SVM) to tackle problems of function approximation and regression estimation. SVR has been shown to have good robust properties against noise. When the parameters used in SVR are improperly selected, overfitting phenomena may still occur. However, the selection of various parameters is not straightforward. Besides, in SVR, outli...

2004
Ming-Wei Chang Chih-Jen Lin

Abstract Minimizing bounds of leave-one-out (loo) errors is an important and efficient approach for support vector machine (SVM) model selection. Past research focuses on their use for classification but not regression. In this article, we derive various loo bounds for support vector regression (SVR) and discuss the difference from those for classification. Experiments demonstrate that the prop...

2013
M.Rajalakshmi S.Kalyani

This paper discusses the application of support vector machine in the area of identification of nonlinear dynamical systems. The aim of this paper is to identify suitable model structure for nonlinear dynamic system. In this paper, Adaptive Neuro Fuzzy Inference Systems (ANFIS) and Support Vector Regression (SVR) models are applied for identification of highly nonlinear dynamic process. The res...

Journal: :Journal of Machine Learning Research 2012
Chia-Hua Ho Chih-Jen Lin

Support vector regression (SVR) and support vector classification (SVC) are popular learning techniques, but their use with kernels is often time consuming. Recently, linear SVC without kernels has been shown to give competitive accuracy for some applications, but enjoys much faster training/testing. However, few studies have focused on linear SVR. In this paper, we extend state-of-the-art trai...

Journal: :Neurocomputing 2012
Marcin Orchel

In this article, we provide some preliminary theoretical analysis and extended practical experiments of a novel regression method proposed recently which is based on representing regression problems as classification ones with duplicated and shifted data. The main results regard partial equivalency of Bayes solutions for regression problems and the transformed classification ones, and improved ...

2015
Sen Lin Eric Yu Xiuzhen Guo

We investigated the comparative performance of Frequency Domain Regression (FDR) and Support Vector Regression (SVR) for time-series prediction of Rossman Store Sales. Due to the extent of the data variables provided, SVR clearly outperformed FDR. Within SVR, our results reviewed that a polynomial kernel with regularization is most effective.

Journal: Journal of Tethys 2017

This paper attempts to predict heavy metals (Pb, Zn and Cu) in the groundwater from Arak city, using support vector regression model(SVR) by taking major elements (HCO3, SO4) in the groundwater from Arak city. 150 data samples and several models were trained and tested using collected data to determine the optimum model in which each model involved two inputs and three outputs. This SVR model f...

2013
Sweta Kumari Shashank Pushkar

Software cost estimation is the process of predicting the effort required to develop a software system. The basic input for the software cost estimation is coding size and set of cost drivers, the output is Effort in terms of Person-Months (PM’s). Here, the use of support vector regression (SVR) has been proposed for the estimation of software project effort. We have used the COCOMO dataset and...

2017
Kasthurirangan Gopalakrishnan Sunghwan Kim Halil Ceylan KASTHURIRANGAN GOPALAKRISHNAN SUNGHWAN KIM

This paper explores the feasibility of applying support vector regression (SVR) kernel-based supervised learning method to develop hot mix asphalt (HMA) dynamic modulus (|E*|) predictive models. SVR-based prediction models were developed using the latest comprehensive |E*| database that is available to the researchers. The SVR model predictions were compared with the existing regression-based p...

1996
Harris Drucker Christopher J. C. Burges Linda Kaufman Alexander J. Smola Vladimir Vapnik

A new regression technique based on Vapnik’s concept of support vectors is introduced. We compare support vector regression (SVR) with a committee regression technique (bagging) based on regression trees and ridge regression done in feature space. On the basis of these experiments, it is expected that SVR will have advantages in high dimensionality space because SVR optimization does not depend...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید