نتایج جستجو برای: strongly lie zero product preserving map
تعداد نتایج: 894480 فیلتر نتایج به سال:
Let A be a unital algebra and M be a unital A-bimodule. A characterization of generalized derivations and generalized Jordan derivations from A into M, through zero products or zero Jordan products, is given. Suppose that M is a unital left A-module. It is investigated when a linear mapping from A into M is a Jordan left derivation under certain conditions. It is also studied whether an algebra...
We show that certain right-invariant metrics endow the infinite-dimensional Lie group of all smooth orientation-preserving diffeomorphisms of the circle with a Riemannian structure. The study of the Riemannian exponential map allows us to prove infinite-dimensional counterparts of results from classical Riemannian geometry: the Riemannian exponential map is a smooth local diffeomorphism and the...
In recent work Cheon, Han, Lee, Ryu, and Stehlé presented an attack on the multilinear map of Coron, Lepoint, and Tibouchi (CLT). They show that given many low-level encodings of zero, the CLT multilinear map can be completely broken, recovering the secret factorization of the CLT modulus. The attack is a generalization of the “zeroizing” attack of Garg, Gentry, and Halevi. We first strengthen ...
In this paper, we describe linear maps between complex Banach algebras that preserve products equal to fixed elements. This generalizes some important special cases where the elements are zero or identity element. First show if such map preserves a finite-rank operator, then it must also product. several instances, is enough product preserving be scalar multiple of an algebra homomorphism. Seco...
In this article we consider maps π : R → R on a non-associative ring R which satisfy the product rule π(ab) = (πa)b + aπb for arbitrary a, b ∈ R, calling such a map a production on R. After some general preliminaries, we restrict ourselves to the case where R is the underlying Lie ring of a finite dimensional split semi-simple Lie algebra over a field F of characteristic zero. In this case we s...
let $mathcal {a} $ and $mathcal {b} $ be c$^*$-algebras. assume that $mathcal {a}$ is of real rank zero and unital with unit $i$ and $k>0$ is a real number. it is shown that if $phi:mathcal{a} tomathcal{b}$ is an additive map preserving $|cdot|^k$ for all normal elements; that is, $phi(|a|^k)=|phi(a)|^k $ for all normal elements $ainmathcal a$, $phi(i)$ is a projection, and there exists a posit...
This paper provides a precise sense in which the time t map for the Euler equations of an ideal fluid in a region in Rn (or a smooth compact n-manifold with boundary) is a Poisson map relative to the Lie-Poisson bracket associated with the group of volume preserving diffeomorphism group. This is interesting and nontrivial because in Eulerian representation, the time t maps need not be C from th...
Let Φ be a trace-preserving, positivity-preserving linear map on the algebra of complex 2 × 2 matrices, and let Ω be any finite-dimensional completely positive map. For p = 2 and p ≥ 4, we prove that the maximal p-norm of the product map Φ⊗Ω is the product of the maximal p-norms of Φ and Ω. Restricting Φ to the class of completely positive maps, this settles the multiplicativity question for al...
Let $mathcal {A} $ and $mathcal {B} $ be C$^*$-algebras. Assume that $mathcal {A}$ is of real rank zero and unital with unit $I$ and $k>0$ is a real number. It is shown that if $Phi:mathcal{A} tomathcal{B}$ is an additive map preserving $|cdot|^k$ for all normal elements; that is, $Phi(|A|^k)=|Phi(A)|^k $ for all normal elements $Ainmathcal A$, $Phi(I)$ is a projection, and there exists a posit...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید