نتایج جستجو برای: stereocilia

تعداد نتایج: 641  

Journal: :Proceedings of the National Academy of Sciences of the United States of America 2006
Anders Fridberger Igor Tomo Mats Ulfendahl Jacques Boutet de Monvel

The cochlea contains two types of sensory cells, the inner and outer hair cells. Sound-evoked deflection of outer hair cell stereocilia leads to fast force production that will enhance auditory sensitivity up to 1,000-fold. In contrast, inner hair cells are thought to have a purely receptive function. Deflection of their stereocilia produces receptor potentials, transmitter release, and action ...

2012
Pierre Hakizimana William E. Brownell Stefan Jacob Anders Fridberger

Hearing relies on mechanical stimulation of stereocilia bundles on the sensory cells of the inner ear. When sound hits the ear, each stereocilium pivots about a neck-like taper near their base. More than three decades of research have established that sideways deflection of stereocilia is essential for converting mechanical stimuli into electrical signals. Here we show that mammalian outer hair...

2010
Benjamin J. Perrin Kevin J. Sonnemann James M. Ervasti

Hair cell stereocilia structure depends on actin filaments composed of cytoplasmic β-actin and γ-actin isoforms. Mutations in either gene can lead to progressive hearing loss in humans. Since β-actin and γ-actin isoforms are 99% identical at the protein level, it is unclear whether each isoform has distinct cellular roles. Here, we compared the functions of β-actin and γ-actin in stereocilia fo...

2012
Shi-Ming Yang Wei Chen Wei-Wei Guo Shuping Jia Jian-He Sun Hui-Zhan Liu Wie-Yen Young David Z. Z. He

The hallmark of mechanosensory hair cells is the stereocilia, where mechanical stimuli are converted into electrical signals. These delicate stereocilia are susceptible to acoustic trauma and ototoxic drugs. While hair cells in lower vertebrates and the mammalian vestibular system can spontaneously regenerate lost stereocilia, mammalian cochlear hair cells no longer retain this capability. We e...

2017
Shanthini Mahendrasingam Robert Fettiplace Kumar N Alagramam Ellen Cross David N Furness

Mechanosensory transduction by vertebrate hair cells depends on a protein complex at the tips of shorter stereocilia associated with mechanoelectrical transduction channels activated by tip links in the hair bundle. In mammalian hair cells, this complex includes transmembrane channel-like protein subunit 1 (TMC1), lipoma HMGIC fusion partner-like 5 protein (LHFPL5) and protocadherin 15 (PCDH15)...

Journal: :The Journal of Cell Biology 1988
L G Tilney M S Tilney D A Cotanche

The stereocilia on each hair cell are arranged into rows of ascending height, resulting in what we refer to as a "staircase-like" profile. At the proximal end of the cochlea the length of the tallest row of stereocilia in the staircase is 1.5 micron, with the shortest row only 0.3 micron. As one proceeds towards the distal end of the cochlea the length of the stereocilia progressively increases...

Journal: :The Journal of Cell Biology 2004
Shin-ichiro Kitajiri Kanehisa Fukumoto Masaki Hata Hiroyuki Sasaki Tatsuya Katsuno Takayuki Nakagawa Juichi Ito Shoichiro Tsukita Sachiko Tsukita

Ezrin/radixin/moesin (ERM) proteins cross-link actin filaments to plasma membranes to integrate the function of cortical layers, especially microvilli. We found that in cochlear and vestibular sensory hair cells of adult wild-type mice, radixin was specifically enriched in stereocilia, specially developed giant microvilli, and that radixin-deficient (Rdx(-)(/)(-)) adult mice exhibited deafness ...

Journal: :Current Biology 1998
Karen Steel Tim Self Steve Brown

Functional sensory hair cells in the inner ear have specialised microvilli — stereocilia — which are essential for hearing. The scanning electron micrograph at top shows the normal arrangement of stereocilia bundles on three outer hair cells in the inner ear of a three-day-old mouse. The stereocilia grow to form rows of graded height in a distinctive V-shaped bundle. Recent studies in mice have...

Journal: :The Journal of Cell Biology 1983
L G Tilney J C Saunders

Located on the sensory epithelium of the sickle-shaped cochlea of a 7- to 10-d-old chick are approximately 5,000 hair cells. When the apical surface of these cell is examined by scanning microscopy, we find that the length, number, width, and distribution of the stereocilia on each hair cell are predetermined. Thus, a hair cell located at the distal end of the cochlea has 50 stereocilia, the lo...

Journal: :The Journal of neuroscience : the official journal of the Society for Neuroscience 2008
David N Furness Shanthini Mahendrasingam Mitsuru Ohashi Robert Fettiplace Carole M Hackney

The sensory bundle of vertebrate cochlear hair cells consists of actin-containing stereocilia that are thought to bend at their ankle during mechanical stimulation. Stereocilia have dense rootlets that extend through the ankle region to anchor them into the cuticular plate. Because this region may be important in bundle stiffness and durability during prolonged stimulation at high frequencies, ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید