نتایج جستجو برای: steiner tree
تعداد نتایج: 172522 فیلتر نتایج به سال:
The Steiner tree problem requires to nd a shortest tree connecting a given set of terminal points in a metric space. We suggest a better and fast heuristic for the Steiner problem in graphs and in rectilinear plane. This heuristic nds a Steiner tree at most 1.757 and 1.267 times longer than the optimal solution in graphs and rectilinear plane, respectively.
The Steiner tree problem asks for a minimum cost tree spanning a given set of terminals S ⊆ V in a weighted graph G = (V, E, c), c : E → R. In this paper we consider a generalization of the Steiner tree problem, so called Polymatroid Steiner Problem, in which a polymatroid P = P (V ) is defined on V and the Steiner tree is required to span at least one base of P (in particular, there may be a s...
The Euclidean Steiner tree problem is to find the tree with minimal Euclidean length spanning a set of fixed points in the plane, allowing the addition of auxiliary points to the set (Steiner points). The problem is NP-hard, so polynomial-time heuristics are desired. We present two such heuristics, both of which utilize an efficient method for computing a locally optimal tree with a given topol...
We consider the problem of constructing Steiner minimum trees for a metric defined by a polygonal unit circle (corresponding to σ ≥ 2 weighted legal orientations in the plane). A linear-time algorithm to enumerate all angle configurations for degree three Steiner points is given. We provide a simple proof that the angle configuration for a Steiner point extends to all Steiner points in a full S...
A full Steiner tree T for a given set of points P is defined to be linear if all Steiner points lie on one path called the trunk of T . A (nonfull) Steiner tree is linear if it is a degeneracy of a full linear Steiner tree. Suppose P is a simple polygonal line. Roughly speaking, T is similar to P if its trunk turns to the left or right when P does. P is a left-turn (or right-turn) polygonal spi...
We will be studying the Group Steiner tree problem in this lecture. Recall that the classical Steiner tree problem is the following. Given a weighted graphG = (V,E), a subset S ⊆ V of the vertices, and a root r ∈ V , we want to find a minimum weight tree which connects all the vertices in S to r. The weights on the edges are assumed to be positive. We will now define the Group Steiner tree prob...
The Steiner tree problem is deened as follows-given a graph G = (V; E) and a subset X V of terminals, compute a minimum cost tree that includes all nodes in X. Furthermore, it is reasonable to assume that the edge costs form a metric. This problem is NP-hard and has been the study of many heuristics and algorithms. We study a generalization of this problem, where there is a \switch" cost in add...
A-Tree is a rectilinear Steiner tree in which every sink is connected to a driver by a shortest length path, while simultaneously minimizing total wire length. This paper presents a polynomial approximation algorithm for the generalized version of A-Tree problem with upper-bounded delays along each path from the driver to the sinks and with restrictions on the number of Steiner nodes. We refer ...
The Steiner tree problem asks for a shortest subgraph connecting a given set of terminals in a graph. It is known to be APX-complete, which means that no polynomial time approximation scheme can exist for this problem, unless P=NP. Currently, the best approximation algorithm for the Steiner tree problem has a performance ratio of + , , whereas the corresponding lower bound is smaller than + , ....
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید