نتایج جستجو برای: standardized hyperspectral processing methodology

تعداد نتایج: 799625  

2015
W. Pervez S. A. Khan

Rapid advancement in remote sensing open new avenues to explore the hyperspectral Hyperion imagery pre-processing techniques, analysis and application for land use mapping. The hyperspectral data consists of 242 bands out of which 196 calibrated/useful bands are available for hyperspectral applications. Atmospheric correction applied to the hyperspectral calibrated bands make the data more usef...

2014
Amit Panwar Annapurna Singh

Hyperspectral data contain a large volume of information. This abundance of data is hard to exploit due to high computational cost involved in processing this data. Dimensionality reduction deals with transforming high dimensional data in to lower dimensional space without losing significance of the High dimensional data. In this paper, a new methodology has been proposed that is based on exist...

2000
P. L. Aguilar A. Plaza P. Martínez R. M. Pérez

Systolic arrays can be used in many different applications in order to improve performance. In particular, digital image processing algorithms are suitable to be implemented by systolic structures, since basic image manipulation operations are usually repetitive and can be mapped into a rectangular systolic structure. In this chapter we discuss the application of systolic arrays to speed up the...

2013
Wing-Kin Ma José M. Bioucas-Dias Jocelyn Chanussot Paul Gader

I n recent years, it has become clear that hyperspectral imaging has formed a core area within the geoscience and remote sensing community. Armed wi th advanced optical sensing technology, hyperspectral imaging offers high spectral resolution—a hyperspectral image can contain more than 200 spectral channels (rather than a few channels as in multispectral images), covering visible and near-infra...

2016
Boaz Arad Ohad Ben-Shahar

Hyperspectral imaging is an important visual modality with growing interest and range of applications. The latter, however, is hindered by the fact that existing devices are limited in either spatial, spectral, and/or temporal resolution, while yet being both complicated and expensive. We present a low cost and fast method to recover high quality hyperspectral images directly from RGB. Our appr...

Journal: :Remote Sensing 2015
Roope Näsi Eija Honkavaara Päivi Lyytikäinen-Saarenmaa Minna Blomqvist Paula Litkey Teemu Hakala Niko Viljanen Tuula Kantola Topi Tanhuanpää Markus Holopainen

Low-cost, miniaturized hyperspectral imaging technology is becoming available for small unmanned aerial vehicle (UAV) platforms. This technology can be efficient in carrying out small-area inspections of anomalous reflectance characteristics of trees at a very high level of detail. Increased frequency and intensity of insect induced forest disturbance has established a new demand for effective ...

Journal: :Integration 2013
Carlos González Sergio Sánchez Abel Paz Javier Resano Daniel Mozos Antonio J. Plaza

Hyperspectral imaging is a growing area in remote sensing in which an imaging spectrometer collects hundreds of images (at different wavelength channels) for the same area on the surface of the Earth. Hyperspectral images are extremely high-dimensional, and require advanced on-board processing algorithms able to satisfy near real-time constraints in applications such as wildland fire monitoring...

2014
Behnaz Bigdeli Farhad Samadzadegan Peter Reinartz

Fusion of remote sensing data from multiple sensors has been remarkably increased for classification. This is because, additional sources may provide more information, and fusion of different information can produce a better understanding of the observed site. In the field of data fusion, fusion of light detection and ranging (LIDAR) and optical remote sensing data for land cover classification...

2006
Mark Z. Salvador

Multi-spectral and hyperspectral sensors have been deployed on airborne platforms for many years. Typical scenarios for airborne collection of spectral data involve over-flights of target areas followed by ground-based data calibration and exploitation. With the advent of flight-qualified, high-performance, parallel computing hardware, however, practical near real-time processing and exploitati...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->