نتایج جستجو برای: skin substitutes
تعداد نتایج: 201103 فیلتر نتایج به سال:
Bio-engineered skin and soft tissue substitutes may be either acellular or cellular. Acellular products (i.e., cadaveric human dermis with cellular material removed) contain a matrix or scaffold composed of materials such as collagen, hyaluronic acid, and fibronectin. Cellular products contain living cells such as fibroblasts and keratinocytes within a matrix. The cells contained within the mat...
Tissue-engineered skin substitutes may be either acellular or cellular. Acellular products (i.e., cadaveric human dermis with cellular material removed) contain a matrix or scaffold composed of materials such as collagen, hyaluronic acid, and fibronectin. Cellular products contain living cells such as fibroblasts and keratinocytes within a matrix. The cells contained within the matrix may be au...
Bioengineered skin substitutes can facilitate wound closure in severely burned patients, but deficiencies limit their outcomes compared with native skin autografts. To identify gene programs associated with their in vivo capabilities and limitations, we extended previous gene expression profile analyses to now compare engineered skin after in vivo grafting with both in vitro maturation and norm...
Skin protects the body from exogenous substances and functions as a barrier to fluid loss and trauma. The skin comprises of epidermal, dermal and hypodermal layers, which mainly contain keratinocytes, fibroblasts and adipocytes, respectively, typically embedded on extracellular matrix made up of glycosaminoglycans and fibrous proteins. When the integrity of skin is compromised due to injury as ...
Engineering of skin substitutes provides a prospective source of advanced therapies for treatment of acute and chronic skin wounds. Hypothetically, engineering of skin substitutes can allow deliberate fabrication of biologic materials with properties that address specific patho-biologic conditions (e.g., burns, scars, cutaneous ulcers, congenital anomalies). By design and incorporation of speci...
Wound healing can be problematic in several clinical settings because of massive tissue injury (burns), wound healing deficiencies (chronic wounds), or congenital conditions and diseases. Engineered skin substitutes have been developed to address the medical need for wound coverage and tissue repair. Currently, no engineered skin substitute can replace all of the functions of intact human skin....
Restoration of the epidermal barrier is a requirement for burn wound closure. A rapid, reliable, and noninvasive measure of the rate of restoration of the epidermal barrier is not readily available. To monitor the reformation of the epidermal barrier, we measured surface electrical capacitance on cultured skin substitutes (human keratinocytes and fibroblasts attached to collagen-glycosaminoglyc...
Tissue engineering of clinically applicable dermo-epidermal skin substitutes is crucially dependent on the three-dimensional extracellular matrix, supporting the biological function of epidermal and dermal cells. This matrix essentially determines the mechanical stability of these substitutes to allow for safe and convenient surgical handling. Collagen type I hydrogels yield excellent biologica...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید