نتایج جستجو برای: single matrix block
تعداد نتایج: 1341643 فیلتر نتایج به سال:
A rank equality is established for the sum of finitely many tripotent matrices via elementary block matrix operations. Moreover, by using this equality and Theorems 8 and 10 in [Chen M. and et al. On the open problem related to rank equalities for the sum of finitely many idempotent matrices and its applications, The Scientific World Journal 2014 (2014), Article ID 702413, 7 page...
this article proposes a direct method for solving three types of integral equations with time delay. by using operational matrix of integration, integral equations can be reduced to a linear lower triangular system which can be directly solved by forward substitution. numerical examples shows that the proposed scheme have a suitable degree of accuracy.
in this paper, we introduce hybrid of block-pulse functions and bernstein polynomials and derive operational matrices of integration, dual, differentiation, product and delay of these hybrid functions by a general procedure that can be used for other polynomials or orthogonal functions. then, we utilize them to solvedelay differential equations and time-delay system. the method is based upon ex...
in this work, we present a computational method for solving second kindnonlinear fredholm volterra integral equations which is based on the use ofhaar wavelets. these functions together with the collocation method are thenutilized to reduce the fredholm volterra integral equations to the solution ofalgebraic equations. finally, we also give some numerical examples that showsvalidity and applica...
in this paper, an effective numerical method is introduced for the treatment of nonlinear two-dimensional volterra-fredholm integro-differential equations. here, we use the so-called two-dimensional block-pulse functions.first, the two-dimensional block-pulse operational matrix of integration and differentiation has been presented. then, by using this matrices, the nonlinear two-dimensional vol...
The main results of this paper are generalizations of classical results from the numerical range to the block numerical range. A different and simpler proof for the Perron-Frobenius theory on the block numerical range of an irreducible nonnegative matrix is given. In addition, the Wielandt's lemma and the Ky Fan's theorem on the block numerical range are extended.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید