نتایج جستجو برای: signed roman domination
تعداد نتایج: 35264 فیلتر نتایج به سال:
A Roman dominating function on a graph G is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of a Roman dominating function is the value f(V (G)) = ∑ u∈V (G) f(u). The Roman domination number of G, γR(G), is the minimum weight of a Roman dominating function on G. In this paper, we...
A Roman dominating function on a graph G = (V,E) is a function f : V −→ {0, 1, 2} satisfying the condition that every vertex v for which f(v) = 0 is adjacent to at least one vertex u for which f(u) = 2. The weight of a Roman dominating function is the value w(f) = ∑ v∈V f(v). The Roman domination number of a graph G, denoted by γR(G), equals the minimum weight of a Roman dominating function on ...
A Roman dominating function of a graph G = (V, E) is a function f : V → {0, 1, 2} such that every vertex x with f(x) = 0 is adjacent to at least one vertex y with f(y) = 2. The weight of a Roman dominating function is defined to be f(V ) = P x∈V f(x), and the minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G. In this paper we answer an open pr...
A Roman dominating function of a graph G = (V, E) is a function f : V → {0, 1, 2} such that every vertex x with f (x) = 0 is adjacent to at least one vertex y with f (y) = 2. The weight of a Roman dominating function is defined to be f (V ) = ∑ x∈V f (x), and the minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G. In this paper we first answer ...
Roman domination is a historically inspired variety of general domination such that every vertex is labeled with labels from {0, 1, 2}. Roman domination number is the smallest of the sums of labels fulfilling condition that every vertex, labeled 0, has a neighbor, labeled 2. Using algebraic approach we give O(C) time algorithm for computing Roman domination number of special classes of polygrap...
Let k ≥ 1 be an integer. A signed Roman k-dominating function on a digraph D is a function f : V (D) −→ {−1, 1, 2} such that ∑x∈N−[v] f(x) ≥ k for every v ∈ V (D), where N−[v] consists of v and all in-neighbors of v, and every vertex u ∈ V (D) for which f(u) = −1 has an in-neighbor w for which f(w) = 2. A set {f1, f2, . . . , fd} of distinct signed Roman k-dominating functions on D with the pro...
In his article published in 1999, Ian Stewart discussed a strategy of Emperor Constantine for defending the Roman Empire. Motivated by this article, Cockayne et al.(2004) introduced the notion of Roman domination in graphs. Let G = (V,E) be a graph. A Roman dominating function of G is a function f : V → {0, 1, 2} such that every vertex v for which f(v) = 0 has a neighbor u with f(u) = 2. The we...
We briefly review known results about the signed edge domination number of graphs. In the case of bipartite graphs, the signed edge domination number can be viewed in terms of its bi-adjacency matrix. This motivates the introduction of the signed domination number of a (0, 1)-matrix. We investigate the signed domination number for various classes of (0, 1)-matrices, in particular for regular an...
Let k be a positive integer, and let G be a simple graph with vertex set V (G). A k-distance Roman dominating function on G is a labeling f : V (G) → {0, 1, 2} such that for every vertex with label 0, there is a vertex with label 2 at distance at most k from each other. The weight of a k-distance Roman dominating function f is the value ω(f) = ∑ v∈V f(v). The k-distance Roman domination number ...
A subset X of edges of a graph G is called an edge dominating set of G if every edge not in X is adjacent to some edge in X . The edge domination number γ′(G) of G is the minimum cardinality taken over all edge dominating sets of G. An edge Roman dominating function of a graph G is a function f : E(G) → {0, 1, 2} such that every edge e with f(e) = 0 is adjacent to some edge e′ with f(e′) = 2. T...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید