نتایج جستجو برای: semi supervised
تعداد نتایج: 172867 فیلتر نتایج به سال:
Various semi-supervised learning methods have been proposed recently to solve the long-standing shortage problem of manually labeled data in sentiment classification. However, most existing studies assume the balance between negative and positive samples in both the labeled and unlabeled data, which may not be true in reality. In this paper, we investigate a more common case of semi-supervised ...
To select unlabeled example effectively and reduce classification error, confidence estimation for graphbased semi-supervised learning (CEGSL) is proposed. This algorithm combines graph-based semi-supervised learning with collaboration-training. It makes use of structure information of sample to calculate the classification probability of unlabeled example explicitly. With multi-classifiers, th...
In opinion mining of product reviews, one often wants to produce a summary of opinions based on product features/attributes. However, for the same feature, people can express it with different words and phrases. To produce a meaningful summary, these words and phrases, which are domain synonyms, need to be grouped under the same feature group. This paper proposes a constrained semisupervised le...
Several semi-supervised learning methods have been proposed to leverage unlabeled data, but imbalanced class distributions in the data set can hurt the performance of most algorithms. In this paper, we adapt the new approach of contrast classifiers for semi-supervised learning. This enables us to exploit large amounts of unlabeled data with a skewed distribution. In experiments on a speech act ...
Considerable progress was recently achieved on semi-supervised learning, which differs from the traditional supervised learning by additionally exploring the information of the unlabelled examples. However, a disadvantage of many existing methods is that it does not generalize to unseen inputs. This paper investigates learning methods that effectively make use of both labelled and unlabelled da...
We present a general framework of spectral methods for semi-supervised dimensionality reduction. Applying an approach called manifold regularization, our framework naturally generalizes existent supervised frameworks. Furthermore, by our two semi-supervised versions of the representer theorem, our framework can be kernelized as well. Using our framework, we give three examples of semi-supervise...
We prove that Lipschitz learning on graphs is consistent with the absolutely minimal Lipschitz extension problem in the limit of infinite unlabeled data and finite labeled data. In particular, we show that the continuum limit is independent of the distribution of the unlabeled data, which suggests the algorithm is fully supervised (and not semisupervised) in this setting. We also present some n...
ii Chapter
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید