نتایج جستجو برای: semi real quaternion
تعداد نتایج: 666348 فیلتر نتایج به سال:
In this article, we study the Hyers-Ulam stability of first-order linear quaternion-valued differential equations. We transfer a equation into real system. The results for equations are obtained according to equivalent relationship between vector 2-norm and quaternion module.
In this paper, we present quaternion matrix algebra techniques that can be used to process the eigen analysis of a color image. Applications of Principal Component Analysis (PCA) in image processing are numerous, and the proposed tools aim to give material for color image processing, that take into account their particular nature. For this purpose, we use the quaternion model for color images a...
We establish necessary and sufficient conditions for the existence of and the expressions for the general real and complex Hermitian solutions to the classical system of quaternion matrix equationsA1X C1, XB1 C2, and A3XA3 C3. Moreover, formulas of the maximal andminimal ranks of four real matrices X1, X2, X3, and X4 in solution X X1 X2i X3j X4k to the system mentioned above are derived. As app...
• Vectorspaces over division rings • Matrices, opposite rings • Semi-simple modules and rings • Semi-simple algebras • Reduced trace and norm • Other criteria for simplicity • Involutions • Brauer group of a field • Tensor products of fields • Crossed product construction of simple algebras • Cyclic algebra construction of simple algebras • Quaternion algebras • Examples • Unramified extensions...
Pattern recognition techniques have been used to automatically recognize the objects, personal identities, predict the function of protein, the category of the cancer, identify lesion, perform product inspection, and so on. In this paper we propose a novel quaternion-based discriminant method. This method represents and classifies color images in a simple and mathematically tractable way. The p...
In this paper, we consider the ranks of four real matrices Gi(i = 0, 1, 2, 3) in M†, where M = M0 +M1i+M2j+M3k is an arbitrary quaternion matrix, and M† = G0 + G1i + G2j + G3k is the Moore-Penrose inverse of M . Similarly, the ranks of four real matrices in Drazin inverse of a quaternion matrix are also presented. As applications, the necessary and sufficient conditions for M† is pure real or p...
A split quaternion learning algorithm for the training of nonlinear finite impulse response adaptive filters for the processing of three- and four-dimensional signals is proposed. The derivation takes into account the non-commutativity of the quaternion product, an aspect neglected in the derivation of the existing learning algorithms. It is shown that the additional information taken into acco...
The 2D Quaternionic Fourier Transform (QFT), applied to a real 2D image, produces an invertible quaternionic spectrum. If we conserve uniquely the first quadrant of this spectrum, it is possible, after inverse transformation, to obtain, not the original image, but a 2D quaternion image, which generalize in 2D the classical notion of 1D analytical image. From this quaternion image, we compute th...
Image splicing detection is of fundamental importance in digital forensics and therefore has attracted increasing attention recently. In this paper, a color image splicing detection approach is proposed based on Markov transition probability of quaternion component separation in quaternion discrete cosine transform (QDCT) domain and quaternion wavelet transform (QWT) domain. Firstly, Markov fea...
In this paper we propose a fast structure-preserving algorithm for computing the singular value decomposition of quaternion matrices. The algorithm is based on the structurepreserving bidiagonalization of the real counterpart for quaternion matrices by applying orthogonal JRS-symplectic matrices. The algorithm is efficient and numerically stable. 2014 Elsevier Inc. All rights reserved.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید