نتایج جستجو برای: ricci tensor
تعداد نتایج: 47312 فیلتر نتایج به سال:
We study the ∗-Ricci operator on Hopf real hypersurfaces in complex quadric. prove that for quadric, tensor is symmetric if and only unit normal vector field singular. In following, we obtain of quadric symmetric, then both Reeb-flow-invariant Reeb-parallel. As correspondence to semi-symmetric Ricci tensor, give a classification with tensor.
We determine the isomorphism classes of symmetric symplectic manifolds of dimension at least 4 which are connected, simply-connected and have a curvature tensor which has only one non-vanishing irreducible component – the Ricci tensor.
We formulate natural conformally invariant conditions on a 4-manifold for the existence of a metric whose Schouten tensor satisfies a quadratic inequality. This inequality implies that the eigenvalues of the Ricci tensor are positively pinched.
The aim of this paper is to characterize $3$-dimensional $N(k)$-paracontact metric manifolds satisfying certain curvature conditions. We prove that a $3$-dimensional $N(k)$-paracontact metric manifold $M$ admits a Ricci soliton whose potential vector field is the Reeb vector field $xi$ if and only if the manifold is a paraSasaki-Einstein manifold. Several consequences of this result are discuss...
We find a kind of variations of Gauss-Codazzi-Ricci equations suitable for Kaluza-Klein reduction and Cauchy problem. Especially the counterpart of extrinsic curvature tensor has antisymmetric part as well as symmetric one. If the dependence of metric tensor on reduced dimensions is negligible it becomes a pure antisymmetric tensor. PACS:03.70;11.15
We exhibit Walker manifolds of signature (2, 2) with various commutativity properties for the Ricci operator, the skew-symmetric curvature operator, and the Jacobi operator. If the Walker metric is a Riemannian extension of an underlying affine structure A, these properties are related to the Ricci tensor of A.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید