نتایج جستجو برای: ricci flow
تعداد نتایج: 485713 فیلتر نتایج به سال:
We introduce a variation of the classical Ricci flow equation that modifies the unit volume constraint of that equation to a scalar curvature constraint. The resulting equations are named the conformal Ricci flow equations because of the role that conformal geometry plays in constraining the scalar curvature and because these equations are the vector field sum of a conformal flow equation and a...
Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multi...
The Ricci flow is an evolution system on metrics. For a given metric as initial data, its local existence and uniqueness on compact manifolds was first established by Hamilton [8]. Later on, De Turck [4] gave a simplified proof. In the later of 80's, Shi [20] generalized the local existence result to complete noncompact manifolds. However, the uniqueness of the solutions to the Ricci flow on co...
The Ricci flow is an evolution system on metrics. For a given metric as initial data, its local existence and uniqueness on compact manifolds was first established by Hamilton [8]. Later on, De Turck [4] gave a simplified proof. In the later of 80's, Shi [20] generalized the local existence result to complete noncompact manifolds. However, the uniqueness of the solutions to the Ricci flow on co...
The Ricci bracket flow is a geometric evolution on Lie algebras which is related to the Ricci flow on the corresponding Lie group. For nilpotent Lie groups, these two flows are equivalent. In the solvable case, it is not known whether they are equivalent. We examine a family of solvable Lie algebras and identify various elements of that family which are solitons under the Ricci bracket flow. We...
We present numerical visualizations of Ricci Flow of surfaces and 3-dimensional manifolds of revolution. Ricci rot is an educational tool which visualizes surfaces of revolution moving under Ricci flow. That these surfaces tend to remain embedded in R3 is what makes direct visualization possible. The numerical lessons gained in developing this tool may be applicable to numerical simulation of R...
We prove the uniqueness of solutions of the Ricci flow on complete noncompact manifolds with bounded curvatures using the De Turck approach. As a consequence we obtain a correct proof of the existence of solution of the Ricci harmonic flow on complete noncompact manifolds with bounded curvatures. Recently there is a lot of study on the Ricci flow on manifolds by R. Hamilton [H1–6], S.Y. Hsu [Hs...
In this work we construct and analyze exact solutions describing Ricci flows and nonholonomic deformations of four dimensional (4D) Taub-NUT spacetimes. It is outlined a new geometric techniques of constructing Ricci flow solutions. Some conceptual issues on spacetimes provided with generic off–diagonal metrics and associated nonlinear connection structures are analyzed. The limit from gravity/...
To every Ricci flow on a manifold M over a time interval I ⊂ R, we associate a shrinking Ricci soliton on the space-time M×I . We relate properties of the original Ricci flow to properties of the new higher-dimensional Ricci flow equipped with its own time-parameter. This geometric construction was discovered by consideration of the theory of optimal transportation, and in particular the result...
We investigate Riemannian (non-Kähler) Ricci flow solutions that develop finite-time Type-I singularities with the property that parabolic rescalings at the singularities converge to singularity models taking the form of shrinking Kähler–Ricci solitons. More specifically, the singularity models for these solutions are given by the “blowdown soliton” discovered in [FIK03]. Our results support th...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید