نتایج جستجو برای: restricted lasso

تعداد نتایج: 122288  

ژورنال: :مهندسی پزشکی زیستی 0
محمدعلی منوچهری فارغ التحصیلی کارشناسی ارشد/دانشگاه یزد وحید ابوطالبی عضو هیات علمی / دانشگاه یزد امین مهنام عضو هیات علمی /دانشگاه اصفهان

سیستم های bci مبتنی بر ssvep به دلیل مزایایی همچون نرخ انتقال اطلاعات بالا، نسبت سیگنال به نویز بالا و راحتی کاربران در استفاده از آن ها توجه بسیاری از محققان را به خود جلب کرده اند. هدف پردازشی در این سیستم ها، شناسایی فرکانس ظاهر شده در سیگنال eeg کاربر است. از میان روش های پردازشی مختلفی که برای شناسایی فرکانس در سیستم های bci مبتنی بر ssvep مورد استفاده قرار می گیرند، روش lasso با استقبال ف...

Journal: :Signal processing 2016
Junbo Duan Charles Soussen David Brie Jérôme Idier Mingxi Wan Yu-Ping Wang

This paper studies the intrinsic connection between a generalized LASSO and a basic LASSO formulation. The former is the extended version of the latter by introducing a regularization matrix to the coefficients. We show that when the regularization matrix is even- or under-determined with full rank conditions, the generalized LASSO can be transformed into the LASSO form via the Lagrangian frame...

2016
Pierre C. Bellec

1 In linear regression with fixed design, we propose two procedures that aggregate a datadriven collection of supports. The collection is a subset of the 2 possible supports and both its cardinality and its elements can depend on the data. The procedures satisfy oracle inequalities with no assumption on the design matrix. Then we use these procedures to aggregate the supports that appear on the...

Journal: :iranian red crescent medical journal 0
farhad lotfi school of health management and information sciences, iran university of medical sciences, tehran, ir iran rohollah kalhor research center for health information management, hormozgan university of medical sciences, bandar abbas, ir iran; department of health service management, school of public health, qazvin university of medical sciences, qazvin, ir iran peivand bastani school of health management and information sciences, shiraz university of medical sciences, shiraz, ir iran nasrin shaarbafchi zadeh school of health management and information sciences, iran university of medical sciences, tehran, ir iran; health management and economics research center, school of health management and information sciences, iran university of medical sciences, tehran, ir iran. tel: +98-2188671615 maryam eslamian health management and economics research center, school of health management and information sciences, iran university of medical sciences, tehran, ir iran; research center for health services management, institute of futures studies in health, school of management and medical information science, kerman university of medical sciences, kerman, ir iran mohammad reza dehghani treatment deputy, ahvaz jundishapur university of medical sciences, ahvaz, ir iran

background hospitals are the most costly operational and really important units of health system because they consume about 50%-89% of total health resources. therefore efficient use of resources could help in saving and reallocating the financial and physical resources. objectives the aim of this study was to obtain an overview of hospitals' performance status by applying different techniques,...

2016
Xiaoting Tao Haomin Zhang X. T. Tao H. M. Zhang

When the variable of model is large, the Lasso method and the Adaptive Lasso method can effectively select variables. This paper prediction the rural residents’ consumption expenditure in China, based on respectively using the Lasso method and the Adaptive Lasso method. The results showed that both can effectively and accurately choose the appropriate variable, but the Adaptive Lasso method is ...

Journal: :CoRR 2013
Mohammed El Anbari Abdallah Mkhadri

We consider the problem of variables selection and estimation in linear regression model in situations where the number of parameters diverges with the sample size. We propose the adaptive Generalized Ridge-Lasso (AdaGril) which is an extension of the the adaptive Elastic Net. AdaGril incorporates information redundancy among correlated variables for model selection and estimation. It combines ...

سیستم‌های BCI مبتنی­بر SSVEP به­دلیل مزایایی چون سرعت انتقال اطلاعات بالا، نسبت بالای سیگنال به نویز و راحتی کاربران در استفاده از آن‌ها، توجه بسیاری از محققان را به خود جلب کرده­اند. هدف پردازشی در این سیستم‌ها، شناسایی فرکانس ظاهر­شده در سیگنال EEG کاربر است. از میان روش‌های پردازشی مختلفی که برای شناسایی فرکانس در سیستم‌های BCI مبتنی­بر SSVEP استفاده می­شوند، روش LASSO با استقبال فراوانی همر...

Journal: :Journal of the American Statistical Association 2014
Hua Zhou Yichao Wu

Regularization is widely used in statistics and machine learning to prevent overfitting and gear solution towards prior information. In general, a regularized estimation problem minimizes the sum of a loss function and a penalty term. The penalty term is usually weighted by a tuning parameter and encourages certain constraints on the parameters to be estimated. Particular choices of constraints...

2012
Wei Qian Yuhong Yang

The adaptive lasso is a model selection method shown to be both consistent in variable selection and asymptotically normal in coefficient estimation. The actual variable selection performance of the adaptive lasso depends on the weight used. It turns out that the weight assignment using the OLS estimate (OLS-adaptive lasso) can result in very poor performance when collinearity of the model matr...

Journal: :Academic Emergency Medicine 2009

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید