نتایج جستجو برای: reisner ring
تعداد نتایج: 123190 فیلتر نتایج به سال:
Normal affine algebraic varieties in characteristic 0 are uniquely determined (up to isomorphism) by the Lie algebra of derivations of their coordinate ring. This was shown by Siebert [Si] and, independently, by Hauser and the third author [HM]. In both papers the assumption of normality is essential. There are nonisomorphic non-normal varieties with isomorphic Lie algebras. The third author [M...
Given a matroid M represented by a linear subspace L ⊂ C (equivalently by an arrangement of n hyperplanes in L), we define a graded ring R(L) which degenerates to the Stanley-Reisner ring of the broken circuit complex for any choice of ordering of the ground set. In particular, R(L) is Cohen-Macaulay, and may be used to compute the h-vector of the broken circuit complex of M . We give a geometr...
Following a construction of Stanley we consider toric face rings associated to rational pointed fans. This class of rings is a common generalization of the concepts of Stanley–Reisner and affine monoid algebras. The main goal of this article is to unify parts of the theories of Stanley–Reisnerand affine monoid algebras. We consider (nonpure) shellable fan’s and the Cohen–Macaulay property. More...
We combine work of Cox on the homogeneous coordinate ring of a toric variety and results of Eisenbud-Mustaţǎ-Stillman and Mustaţǎ on cohomology of toric and monomial ideals to obtain a formula for computing χ(OX (D)) for a divisor D on a complete simplicial toric variety XΣ. The main point is to use Alexander duality to pass from the toric irrelevant ideal, which appears in the computation of χ...
We show that a finite regular cell complex with the intersection property is a Cohen-Macaulay space iff the top enriched cohomology module is the only nonvanishing one. We prove a comprehensive generalization of Balinski’s theorem on convex polytopes. Also we show that for any Cohen-Macaulay cell complex as above, although there is now generalization of the Stanley-Reisner ring of simplicial co...
Generalizing the notion of a Koszul algebra, a graded kalgebra A is K2 if its Yoneda algebra ExtA(k, k) is generated as an algebra in cohomology degrees 1 and 2. We prove a strong theorem about K2 factor algebras of Koszul algebras and use that theorem to show the Stanley-Reisner face ring of a simplicial complex ∆ is K2 whenever the Alexander dual simplicial complex ∆∗ is (sequentially) Cohen-...
Consider the general n-gon with vertices at the points 1,2, . . . ,n. Then its suspension involves two more vertices, say at n+1 and n+2. Let R be the polynomial ring k[x1,x2, . . . ,xn], where k is any field. Then we can associate an ideal I to our suspension in the Stanley-Reisner sense. In this paper, we find a free minimal resolution and the Betti numbers of the R-module R/I.
The research summarized in this thesis consists essentially of two parts. In the first, we generalize a coloring theorem of Baxter about triangulations of the plane (originally used to prove combinatorially Brouwer's fixed point theorem in two dimensions) to arbitrary dimensions and to oriented simplicial and cubical pseudomanifolds. We show that in a certain sense no other generalizations may ...
Let U be the set of prime ideals P completion a Stanley–Reisner ring S, such that localization at Frobenius algebra injective hull residue field S is finitely generated algebra. We give partial answer to conjecture made by M. Katzman about openness U. Specifically, we show has non-empty interior and present some sufficient conditions for principal open D(f) contained in U, intersections closed ...
A few years ago, I defined a squarefree module over a polynomial ring S = k[x1, . . . , xn] generalizing the Stanley-Reisner ring k[∆] = S/I∆ of a simplicial complex ∆ ⊂ 2. This notion is very useful in the StanleyReisner ring theory. In this paper, from a squarefree S-module M , we construct the k-sheaf M on an (n − 1) simplex B which is the geometric realization of 2. For example, k[∆] is (th...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید