نتایج جستجو برای: rbf network
تعداد نتایج: 674885 فیلتر نتایج به سال:
Function approximation has been found in many applications. The radial basis function (RBF) network is one approach which has shown a great promise in this sort of problems because of its faster learning capacity. A traditional RBF network takes Gaussian functions as its basis functions and adopts the least-squares criterion as the objective function, However, it still suffers from two major pr...
This paper describes a novel adaptive noise cancellation system with fast tunable radial basis function (RBF). The weight coefficients of the RBF network are adapted by the multi-innovation recursive least square (MRLS) algorithm. If the RBF network performs poorly despite of the weight adaptation, an insignificant node with little contribution to the overall performance is replaced with a new ...
We present a new constructive algorithm for building Radial-Basis-Function (RBF) network classiiers and a tree based associated algorithm for fast processing of the network. This method, named Constructive Tree Radial-Basis-Function (CTRBF), allows to build and train a RBF network in one pass over the training data set. The training can be in supervised or unsupervised mode. Furthermore, the al...
In this paper, a nonlinear offline model of the solid oxide fuel cell (SOFC) is built by using a radial basis function (RBF) neural network based n a genetic algorithm (GA). During the process of modeling, the GA aims to optimize the parameters of RBF neural networks and the optimum alues are regarded as the initial values of the RBF neural network parameters. Furthermore, we utilize the gradie...
| This paper presents a fast orthogo-nalization process to train a Radial Basis Function (RBF) neural network. The traditional methods for connguring the RBF weights is to use some matrix inversion or iterative process. These traditional approaches are either time consuming or computationally expensive, and often do not converge to a solution. The goal of this paper is rst to use a fast orthogo...
A Radial Basis Function ( RBF ) neural network can be regarded as a feed forward network composed of multiple layers of neurons with entirely different roles. The input layer made of sensory units that connect the network to its environment. A radial basis function neural network depends mainly upon an adequate choice of the number and positions of its basis function centers. In case of general...
In order to improve the precision of gyroscope, two decoupling method of DTG(Dynamic Tuned Gyroscope) were analyzed, the BP neural network and RBF network. The BP neural network has many advantages Compared to the traditional decoupling method, but still some drawbacks such as the over training, the congress process is very slow, and the hidden layer is also hard to determined. The paper introd...
This study deals with predicting nonlinear time history deflection of scallop domes subject to earthquake loading employing neural network technique. Scallop domes have alternate ridged and grooves that radiate from the centre. There are two main types of scallop domes, lattice and continuous, which the latticed type of scallop domes is considered in the present paper. Due to the large number o...
A Radial Basis Function ( RBF ) neural network can be regarded as a feed forward network composed of multiple layers of neurons with entirely different roles. The input layer made of sensory units that connect the network to its environment. A radial basis function neural network depends mainly upon an adequate choice of the number and positions of its basis function centers. In case of general...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید