نتایج جستجو برای: quantum dots qds

تعداد نتایج: 304238  

2013
David Prochazka Jan Novotný Radomír Malina

Here we report on the utilization of Laser-Induced Breakdown Spectroscopy (LIBS) for determination of Quantum Dots (QDs) in liquid solution. The process of optimization of experimental conditions from choosing the carrier medium to application of colloid QDs is described. The main goal was to get the best possible signal to noise ratio. The results obtained from the measurements confirmed the c...

2014
Salam Massadeh Thomas Nann Ian Wark

This article reports on a study on fluorescence adenosine triphosphate (ATP) detection by InP/ZnS quantum dots (QDs). We present a spectroscopic analysis displaying the effect of enzymatic reactions of glucose oxidase (GOX) and hexokinase (HEX) on the InP/ZnS quantum dots at physiological pH. The InP/ZnS quantum dots act as glucose sensors in the presence of GOX, Glu and ATP, and their luminesc...

2013
Fuming Sang Yang Yang Hongyuan Wang Xiaolei Ju Zhizhou Zhang

Decent hot-start effects were here reported in Taq DNA polymerase-based polymerase chain reaction (PCR) when water-soluble CdTe quantum dots (QDs) were employed. The hot-start effects were revealed by the higher amplicon yields and distinguished suppression of nonspecific amplification after pre-incubation of PCR mix with quantum dots between 30 ̊C and 56 ̊C. DNA targets were well amplified even ...

Journal: :Physical chemistry chemical physics : PCCP 2006
Andrew M Smith Hongwei Duan Matthew N Rhyner Gang Ruan Shuming Nie

A number of procedures are currently available to encapsulate and solubilize hydrophobic semiconductor Quantum Dots (QDs) for biological applications. Most of these procedures are based on the use of small-molecule coordinating ligands, amphiphilic polymers, or amphiphilic lipids. However, it is still not clear how these different surface coating molecules affect the optical, colloidal, and che...

Journal: :Optical Materials Express 2012

2009
C. Bayram M. Razeghi

Self-assembled InGaN quantum dots (QDs) were grown on GaN templates by metalorganic chemical vapor deposition. 2D–3D growth mode transition through Stranski–Krastanov mode was observed via atomic force microscopy. The critical thickness for In0.67Ga0.33N QDs was determined to be four monolayers. The effects of growth temperature, deposition thickness, and V/III ratio on QD formation were examin...

2011
Yanjie Zhang Aaron R. Clapp

Luminescent colloidal quantum dots (QDs) possess numerous advantages as fluorophores in biological applications. However, a principal challenge is how to retain the desirable optical properties of quantum dots in aqueous media while maintaining biocompatibility. Because QD photophysical properties are directly related to surface states, it is critical to control the surface chemistry that rende...

Journal: :International Journal of Molecular Sciences 2009
Jana Drbohlavova Vojtech Adam Rene Kizek Jaromir Hubalek

The use of fluorescent nanoparticles as probes for bioanalytical applications is a highly promising technique because fluorescence-based techniques are very sensitive. Quantum dots (QDs) seem to show the greatest promise as labels for tagging and imaging in biological systems owing to their impressive photostability, which allow long-term observations of biomolecules. The usage of QDs in practi...

Journal: :Dalton transactions 2015
Ji-Tao Song Xiao-Quan Yang Xiao-Shuai Zhang Dong-Mei Yan Ming-Hao Yao Meng-Yao Qin Yuan-Di Zhao

In this study, silica coated Au nanospheres (Au@SiO2) were prepared by a reverse microemulsion method; subsequently, a layer of fluorescent quantum dots (QDs) were adsorbed onto it and then it was coated with silica again. After modifying with PVP, the composite silica coated gold nanosphere and quantum dots nanoparticle (Au@SiO2-QDs/SiO2-PVP) was obtained. This composite structure contained Au...

2005
Yang Xu Yuan C. Xu Pei Q. Wang

A great deal of interest has been dawn on the colloidal chemistry based semiconductor nanocrysallites, also known as quantum dots (QDs). Because of the strong quantum confinement, quantum dots have unique size-dependent optical properties, which are much more superior to the conventional organic fluorescence materials. In addition, strong chemical resistant makes inorganic semiconductor QDs ide...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید