نتایج جستجو برای: phytoextraction
تعداد نتایج: 574 فیلتر نتایج به سال:
Although the beneficial effects on growth and trace element accumulation in Salix spp. inoculated with microbes are well known, little information is available on the interactions among trace elements and macronutrients. The main purpose of this study was to assess the effect of phytoaugmentation with the rhizobacteria Agromyces sp., Streptomyces sp., and the combination of each of them with th...
The use of chelants to enhance phytoextraction is one method being tested to make phytoextraction efficient enough to be used as a remediation technique for heavy metal pollution in the field. We performed pot experiments with sunflowers in order to investigate the use of the biodegradable chelating agent SS-EDDS for this purpose. We used singly and combined contaminated soils (Cu, Zn) and mult...
Chelates have been shown to enhance phytoextraction of Pb from contaminated soil. Mechanisms behind this phenomenon, however, remain largely unexplored. In this paper we examine chelate effect on Pb dissolution, plant Pb uptake, and internal plant Pb translocation. EDTA was found to be the most efficient in increasing watersoluble Pb concentration in our test soil. Unfortunately, PbEDTA is high...
Heavy metals are among the most widespread pollutants in soil. Phytoextraction technology is used to solve problem of multi-metal-contaminated The efficiency this process can be increased by introducing various amendments. A soil amendment any material added a improve its physical properties, such as water retention, permeability, infiltration, drainage, aeration, and structure. Some chemical a...
Phytoextraction may be applied at field scale when the removal of bioavailable metals is the specific target of the technology. Residual metals in soil can be considered substantially inert or to be evaluated by site specific risk analysis.
Single and joint ectomycorrhizal (+ Hebeloma mesophaeum) and bacterial (+ Bacillus cereus) inoculations of willows (Salix viminalis) were investigated for their potential and mode of action in the promotion of cadmium (Cd) and zinc (Zn) phytoextraction. Dual fungal and bacterial inoculations promoted the biomass production of willows in contaminated soil. Single inoculations either had no effec...
Recently discovered As-hyperaccumulator ferns hold promise for phytoremediation of As-polluted soils. We investigated changes in the rhizosphere characteristics of Pteris vittata (Chinese Brake fern) relevant for its use in phytoextraction. Plants were grown in rhizoboxes filled with soil containing 2270 mg kg(-1) As. Dissolved organic carbon (DOC) concentrations in rhizosphere soil solution we...
Heavy metals contamination of soil is a widespread global problem. Chelant assisted phytoextraction has been proposed to improve the efficiency of phytoextraction which involves three subsequent levels: transfer of metals from the bulk soil to the root surfaces, uptake into the roots and translocation to the shoots. However, most studies focused on the first level. A hydroponic experiment, whic...
Arsenic (As) is an ubiquitous trace metalloid found in all environmental media. Its presence at elevated concentrations in soils derives from both anthropogenic and natural inputs. Arsenic is a toxic and carcinogenic element, which has caused severe environmental and health problem worldwide. Technologies currently available for the remediation of arsenic-contaminated sites are expensive, envir...
Phytoextraction and phytostabilization are well-established sub-processes of phytoremediation that are being followed for in situ remediation of soils contaminated with toxic metals. Taraxacum mongolicum Hand-Mazz, a newly reported Cd accumulator has shown considerable potential for phytoextracting Cd. This paper investigated the effects of urea and chicken manure on T. mongolicum phytoextracti...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید