نتایج جستجو برای: phenylenic nanotorus

تعداد نتایج: 42  

2014
S. Nagarajan

The Szeged index of a graph G is defined as S z(G) = ∑ uv = e ∈ E(G) nu(e)nv(e), where nu(e) is number of vertices of G whose distance to the vertex u is less than the distance to the vertex v in G. Similarly, the revised Szeged index of G is defined as S z∗(G) = ∑ uv = e ∈ E(G) ( nu(e) + nG(e) 2 ) ( nv(e) + nG(e) 2 ) , where nG(e) is the number of equidistant vertices of e in G. In this paper,...

Journal: :International Journal of Apllied Mathematics 2020

The center (periphery) of a graph is the set of vertices with minimum (maximum) eccentricity. In this paper, the structure of centers and peripheries of some classes of composite graphs are determined. The relations between eccentricity, radius and diameter of such composite graphs are also investigated. As an application we determine the center and periphery of some chemical graphs such as nan...

M. GHORBANI S. BABARAHIM S. MORADI

The concept of geometric-arithmetic indices was introduced in the chemical graph theory. These indices are defined by the following general formula:     ( ) 2 ( ) uv E G u v u v Q Q Q Q GA G , where Qu is some quantity that in a unique manner can be associated with the vertex u of graph G. In this paper the exact formula for two types of geometric-arithmetic index of Vphenylenic nanotube ar...

2004
Y. Y. Chou Lei Liu C. S. Jayanthi S. Y. Wu

The realization of the potential of carbon nanotori as elements of nanoscale devices based on their recently predicted unusual properties requires a thorough understanding of contacting these nanostructures. We carried out a series of calculations of the electric conductance of carbon nanotori contacted by single-wall carbon nanotubes to shed light on the effects of the geometry as well as the ...

2017
G. Thorner J. M. Kiat C. Bogicevic I. Kornev Gentien Thorner Jean-Michel Kiat Christine Bogicevic Igor Kornev

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید