نتایج جستجو برای: pca method

تعداد نتایج: 1647441  

2016
Jian-Feng Shi Steve Ulrich Stephane Ruel

The method of Principal Components Analysis (PCA) is widely used in statistical data analysis for engineering and the sciences. It is an effective tool for reducing the dimensionality of datasets while retaining majority of the data information. This paper explores the method of using PCA for spacecraft pose estimation for the purpose of proximity operations, and adapts a novel kernel based PCA...

Journal: :Optics letters 2011
J Vargas J Antonio Quiroga T Belenguer

We recently presented a new asynchronous demodulation method for phase-sampling interferometry. The method is based in the principal component analysis (PCA) technique. In the former work, the PCA method was derived heuristically. In this work, we present an in-depth analysis of the PCA demodulation method.

2013
Manisha Satone

Face recognition has advantages over other biometric methods. Principal Component Analysis (PCA) has been widely used for the face recognition algorithm. PCA has limitations such as poor discriminatory power and large computational load. Due to these limitations of the existing PCA based approach, we used a method of applying PCA on wavelet subband of the face image and two methods are proposed...

2006
P. S. Hiremath

In this paper, a new technique called symbolic kernel Principal Component Analysis (KPCA) is explored to develop a model for face representation and recognition. The conventional kernel PCA method extracts single valued features from the original image space to represent face images. The proposed method reduces the dimensionality of original image space by representing the face images as symbol...

Journal: :Artificial Intelligence Review 2022

Abstract Principal Component Analysis (PCA) is one of the most widely used data analysis methods in machine learning and AI. This manuscript focuses on mathematical foundation classical PCA its application to a small-sample-size scenario large dataset high-dimensional space scenario. In particular, we discuss simple method that can be approximate latter case. also help kernel or (KPCA) for larg...

Journal: :JDIM 2013
Jian Ni Yuduo Li

In order to improve the rate of facial expression recognition. The Gabor wavelet fusion PCA+FLD method is proposed as a new method this paper. Firstly, face image preprocessing, and then carries on the two-dimensional wavelet transform Gabor, first constructed five scale eight directional wavelet filter, through the PCA+FLD method for dimensionality reduction, and finally obtaining an optimum e...

2010
Magnus O. Ulfarsson Victor Solo

Sparse principal component analysis combines the idea of sparsity with principal component analysis (PCA). There are two kinds of sparse PCA; sparse loading PCA (slPCA) which keeps all the variables but zeroes out some of their loadings; and sparse variable PCA (svPCA) which removes whole variables by simultaneously zeroing out all the loadings on some variables. In this paper we propose a mode...

2009
Chenlei LENG Hansheng WANG C. LENG H. WANG

The method of sparse principal component analysis (S-PCA) proposed by Zou, Hastie, and Tibshirani (2006) is an attractive approach to obtain sparse loadings in principal component analysis (PCA). S-PCA was motivated by reformulating PCA as a least-squares problem so that a lasso penalty on the loading coefficients can be applied. In this article, we propose new estimates to improve S-PCA in the...

2017
Yiran Wang Zhifeng Chen Jing Wang Lixia Yuan Ling Xia Feng Liu

The k-t principal component analysis (k-t PCA) is an effective approach for high spatiotemporal resolution dynamic magnetic resonance (MR) imaging. However, it suffers from larger residual aliasing artifacts and noise amplification when the reduction factor goes higher. To further enhance the performance of this technique, we propose a new method called sparse k-t PCA that combines the k-t PCA ...

2012
Jin-Xing Liu Yong Xu Chun-Hou Zheng Yi Wang Jing-Yu Yang

Conventional gene selection methods based on principal component analysis (PCA) use only the first principal component (PC) of PCA or sparse PCA to select characteristic genes. These methods indeed assume that the first PC plays a dominant role in gene selection. However, in a number of cases this assumption is not satisfied, so the conventional PCA-based methods usually provide poor selection ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید