نتایج جستجو برای: outer independent 2 rainbow dominating function

تعداد نتایج: 3798565  

Journal: :transactions on combinatorics 2014
maryam atapour sepideh norouzian seyed mahmoud sheikholeslami

a function $f:v(g)rightarrow {-1,0,1}$ is a {em minusdominating function} if for every vertex $vin v(g)$, $sum_{uinn[v]}f(u)ge 1$. a minus dominating function $f$ of $g$ is calleda {em global minus dominating function} if $f$ is also a minusdominating function of the complement $overline{g}$ of $g$. the{em global minus domination number} $gamma_{g}^-(g)$ of $g$ isdefined as $gamma_{g}^-(g)=min{...

A {em Roman dominating function} on a graph $G$ is a function$f:V(G)rightarrow {0,1,2}$ satisfying the condition that everyvertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex$v$ for which $f(v) =2$. {color{blue}A {em restrained Roman dominating}function} $f$ is a {color{blue} Roman dominating function if the vertices with label 0 inducea subgraph with no isolated vertex.} The wei...

Journal: :Discrete Applied Mathematics 2013
Yue-Li Wang Kuo-Hua Wu

Let f be a function that assigns to each vertex a subset of colors chosen from a set C = {1, 2, . . . , k} of k colors. If  u∈N(v) f (u) = C for each vertex v ∈ V with f (v) = ∅, then f is called a k-rainbow dominating function (kRDF) of G where N(v) = {u ∈ V | uv ∈ E}. The weight of f , denoted by w(f ), is defined as w(f ) =  v∈V |f (v)|. Given a graph G, the minimum weight among all weight...

‎‎Let $G=(V‎, ‎E)$ be a simple graph with vertex set $V$ and edge set $E$‎. ‎A {em mixed Roman dominating function} (MRDF) of $G$ is a function $f:Vcup Erightarrow {0,1,2}$ satisfying the condition that every element $xin Vcup E$ for which $f(x)=0$ is adjacent‎‎or incident to at least one element $yin Vcup E$ for which $f(y)=2$‎. ‎The weight of an‎‎MRDF $f$ is $sum _{xin Vcup E} f(x)$‎. ‎The mi...

Journal: :Australasian J. Combinatorics 2012
M. Adabi E. Ebrahimi Targhi Nader Jafari Rad M. Saied Moradi

A Roman dominating function on a graph G is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of a Roman dominating function is the value f(V (G)) = ∑ u∈V (G) f(u). The Roman domination number of G, γR(G), is the minimum weight of a Roman dominating function on G. In this paper, we...

2011
Andreas Akun

This study aims at exploring postcolonial themes raised by Andrea Hirata’s Laskar Pelangi (Rainbow Warriors). Specifically, it will reveal the characteristics of hybridity found in the novel that prove this literary work may be categorized as postcolonial writing despite the fact that western or white colonialism has no impact or trace at all in the novel. Furthermore, the study will prove that...

2014
J. Amjadi

The rainbow game domination subdivision number of a graph G is defined by the following game. Two players D and A, D playing first, alternately mark or subdivide an edge of G which is not yet marked nor subdivided. The game ends when all the edges of G are marked or subdivided and results in a new graph G′. The purpose of D is to minimize the 2-rainbow dominating number γr2(G ′) of G′ while A t...

Journal: :transactions on combinatorics 2015
roushini leely pushpam sampath padmapriea

a roman dominating function (rdf) on a graph g = (v,e) is defined to be a function satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. a set s v is a restrained dominating set if every vertex not in s is adjacent to a vertex in s and to a vertex in . we define a restrained roman dominating function on a graph g = (v,e) to be ...

A double Roman dominating function on a graph $G$ with vertex set $V(G)$ is defined in cite{bhh} as a function$f:V(G)rightarrow{0,1,2,3}$ having the property that if $f(v)=0$, then the vertex $v$ must have at least twoneighbors assigned 2 under $f$ or one neighbor $w$ with $f(w)=3$, and if $f(v)=1$, then the vertex $v$ must haveat least one neighbor $u$ with $f(u)ge 2$. The weight of a double R...

2010
Johannes H. Hattingh Ernst J. Joubert

Let G = (V,E) be a graph. A set D ⊆ V is a total outer-connected dominating set of G if D is dominating and G[V −D] is connected. The total outer-connected domination number of G, denoted γtc(G), is the smallest cardinality of a total outer-connected dominating set of G. It is known that if T is a tree of order n ≥ 2, then γtc(T ) ≥ 2n 3 . We will provide a constructive characterization for tre...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید