نتایج جستجو برای: nonnegative signed total roman domination
تعداد نتایج: 840992 فیلتر نتایج به سال:
In this paper, we present new upper bounds for the global domination and Roman domination numbers and also prove that these results are asymptotically best possible. Moreover, we give upper bounds for the restrained domination and total restrained domination numbers for large classes of graphs, and show that, for almost all graphs, the restrained domination number is equal to the domination num...
a roman dominating function (rdf) on a graph g = (v,e) is defined to be a function satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. a set s v is a restrained dominating set if every vertex not in s is adjacent to a vertex in s and to a vertex in . we define a restrained roman dominating function on a graph g = (v,e) to be ...
Let G be a graph with no isolated vertex and let N(v) the open neighbourhood of v∈V(G). f:V(G)→{0,1,2} function Vi={v∈V(G):f(v)=i} for every i∈{0,1,2}. We say that f is strongly total Roman dominating on if subgraph induced by V1∪V2 has N(v)∩V2≠∅ v∈V(G)\V2. The domination number G, denoted γtRs(G), defined as minimum weight ω(f)=∑x∈V(G)f(x) among all functions G. This paper devoted to study it ...
a {em roman dominating function} on a graph $g = (v ,e)$ is a function $f : vlongrightarrow {0, 1, 2}$ satisfying the condition that every vertex $v$ for which $f (v) = 0$ is adjacent to at least one vertex $u$ for which $f (u) = 2$. the {em weight} of a roman dominating function is the value $w(f)=sum_{vin v}f(v)$. the roman domination number of a graph $g$, denoted by $gamma_r(g)$, equals the...
Let $G$ be a graph with vertex set $V(G)$. For any integer $kge 1$, a signed (total) $k$-dominating functionis a function $f: V(G) rightarrow { -1, 1}$ satisfying $sum_{xin N[v]}f(x)ge k$ ($sum_{xin N(v)}f(x)ge k$)for every $vin V(G)$, where $N(v)$ is the neighborhood of $v$ and $N[v]=N(v)cup{v}$. The minimum of the values$sum_{vin V(G)}f(v)$, taken over all signed (total) $k$-dominating functi...
Let k be a positive integer and G = (V,E) be a graph of minimum degree at least k − 1. A function f : V → {−1, 1} is called a signed k-dominating function of G if ∑ u∈NG[v] f(u) ≥ k for all v ∈ V . The signed k-domination number of G is the minimum value of ∑ v∈V f(v) taken over all signed k-dominating functions of G. The signed total k-dominating function and signed total k-domination number o...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید