نتایج جستجو برای: motie m r
تعداد نتایج: 893833 فیلتر نتایج به سال:
فرض کنیم r حلقه ی جابه جایی یکدار و m یک r-مدول یکانی باشد. در این پایان نامه طیف یک مدول را مورد بررسی قرار می دهیم و شرایطی را ارائه می دهیم که تحت آنها طیف r-مدول m، متشکل از تمام زیر مدولهای اول m، دارای توپولوژی زاریسکی می باشد. نشان می دهیم در حالتی که m مولد متناهی است طیف m دارای توپولوژی زاریسکی است اگر و فقط اگر m ضربی باشد. همچنین شرایطی را بررسی می کنیم که تحت آنها فضای زاریسکی m...
اگر r یک حلقه ی دلخواه باشد، -rمدول راست، غیرصفر و یک دار m، یک مدول ثانویه نامیده می شود، هرگاه m و همه ی تصاویر هم ریختی(خارج قسمت ها) غیرصفرm، پوچ ساز یکسان در r داشته باشند. ثابت می شود که اگر r حلقه ای باشد که برای هر ایدال اول p از r، r/p یک حلقه ی گلدی چپ و کراندار چپ باشد، آن گاه r-مدول راست m، ثانویه است اگر و تنها اگر q=annr(m) یک ایدال اول r باشد و m یک –r/qمدول راست بخش پذیر باشد. ا...
فرض کنیم r یک حلقه جابجایی و نوتری و a ایده آلی از r باشد و m یک r – مدول باشد. ابتدا نشان می دهیم که اگر m متناهی مولد باشد و مدولهای کوهمولوژی موضعی (h(m مینیماکس باشند آنگاه برای هر زیر مدول مینیماکس n از m مدول ( hom (r/i, h(m)/n متناهی مولد است که نتیجه می دهد مجموعه (ass(h(m)/n یک مجموعه متناهی است در ادامه برای مدول دلخواه m عضویت مدولهای کوهمولوژی موضعی (h(m به یک کلاس زیر کاتگوری سر خ...
یک r-مدول راست m را قویا دیو می نامیم هرگاه برای هر زیرمدول n از m، tr(n,m)=n. شرایط معادل برای این که یک مدول قویا دیو باشد، بررسی شده است. اگر m کاهشی و قویا دیو باشد، آنگاه end(m ) یک حلقه منظم قوی است و عکس این مطلب اگر r یک حوزه صحیح ددکیند و m تابی باشد درست است. اگر حلقه r یک حوزه صحیح ددکیند باشد،آنگاه m قویا دیو است اگروتنهااگر m?r یا m یک مدول تابی و دیو باشد. روی حلقه های تعویضپذیر، ...
در این پایان نامهr))mn ، حلقه ماتریسی n×n ، روی حلقه r می باشد، که در برخی موارد با حلقه ماتریسی کامل بیان شده است. فرض کنیم k میدان و m...
فرض می کنیم(z(r مجموعه مقسوم علیه صفر در حلقه ی جابجابی r و m فضای ایدآل های اول مینیمال در حلقه ی r با توپولوژی زاریسکی باشد.ایدآل i حلقه ی r را قویاًچگال یا به طور خلاصه sd-ایدآل گوییم، هرگاه i زیرمجموعه ای از (z(r و مشمول در هیچ ایدآل اول مینیمال نباشد. مجموعه ی همه α عضو r را که ( d(α) = m/v(α در m فشرده باشد. نشان می دهیم که r دارای خاصیت (a)و m فشرده است اگر وتنها اگر r هیچ sd-ایدالی نداشت...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید