نتایج جستجو برای: metropolis hastings algorithm

تعداد نتایج: 759316  

1997
Antonietta Mira Luke Tierney

We study the slice sampler, a method of constructing a reversible Markov chain with a speciied invariant distribution. Given an independence Metropolis-Hastings algorithm it is always possible to construct a slice sampler that dominates it in the Peskun sense. This means that the resulting Markov chain produces estimates with a smaller asymptotic variance. Furthermore the slice sampler has a sm...

2005
Hugo Hammer Håkon Tjelmeland HÅKON TJELMELAND

We propose new control variates for variance reduction in the Metropolis–Hastings algorithm. We use variates that are functions of both the current state of the Markov chain and the proposed new state. This enable us to specify control variates which have known mean values for general target and proposal distributions. We develop the ideas for both the standard Metropolis–Hastings algorithm and...

2009
Konstantin M. Zuev Lambros S. Katafygiotis

The development of an efficient MCMC strategy for sampling from complex distributions is a difficult task that needs to be solved for calculating small failure probabilities encountered in high-dimensional reliability analysis of engineering systems. Usually different variations of the Metropolis-Hastings algorithm (MH) are used. However, the standard MH algorithm does generally not work in hig...

2004
Yves F. Atchadé François Perron

This paper proposes methods to improve Monte Carlo estimates when the Independent MetropolisHastings Algorithm (IMHA) is used. Our rst approach uses a control variate based on the sample generated by the proposal distribution. We derive the variance of our estimator for a xed sample size n and show that, as n tends to in nity, this variance is asymptotically smaller than the one obtained with t...

Gholamhossein Gholami,

Abstract: The Exponentiated Gumbel (EG) distribution has been proposed to capture some aspects of the data that the Gumbel distribution fails to specify. In this paper, we estimate the EG's parameters in the Bayesian framework. We consider a 2-level hierarchical structure for prior distribution. As the posterior distributions do not admit a closed form, we do an approximated inference by using ...

Journal: :Statistics and Computing 2012
Matti Vihola

The adaptive Metropolis (AM) algorithm of Haario, Saksman and Tamminen [Bernoulli 7 (2001) 223-242] uses the estimated covariance of the target distribution in the proposal distribution. This paper introduces a new robust adaptive Metropolis algorithm estimating the shape of the target distribution and simultaneously coercing the acceptance rate. The adaptation rule is computationally simple ad...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید