نتایج جستجو برای: methane flame

تعداد نتایج: 41345  

2007
H. C. Magel

The description of chemical kinetics in turbulent reactive flows is an important task to improve combustion models. This paper describes the inclusion of detailed chemical reaction mechanisms into the framework of a turbulent flame simulation. Calculations are based on a finite-volume solution procedure including submodels for turbulent flow, combustion of fuel and radiative heat transfer. The ...

2017
Christophe Almarcha Bruno Denet Joel Quinard

This paper reports an experimental investigation of premixed propane and methane-air flames propagating freely in tubes 1.5 m long and with diameters 54 and 94 mm. Two regimes of propagation are distinguished by correlating the flame speed and the radius of curvature at the flame tip. The characteristic lengths are then related to the cut-off wavelengths estimated from linear theories and compa...

1999
N. G. Glumac D. G. Goodwin

Diamond growth using a new low-pressure combustion technique is reported. A large-area hydrogen/oxygen flame is used as the source of atomic hydrogen. Methane diluted in hydrogen is injected into the flame near a heated silicon substrate, on which diamond crystallites nucleate and grow. This technique is potentially capable of large-area film growth, since atomic hydrogen can be generated unifo...

2010
V. N. Kornilov

Experimental and numerical techniques to characterize the response of premixed methane-air flames to acoustic waves are discussed and applied to a multi-slit Bunsen burner. The steady flame shape, flame front kinematics and flow field of acoustically exited flames, as well as the flame transfer function and matrix are computed. The numerical results are compared with experiments. The influence ...

1999
JACQUELINE H. CHEN

Direct numerical simulations of two-dimensional unsteady premixed methane/air flames are performed to determine the correlation of flame-speed with stretch over a wide range of curvatures and strain rates generated by intense two-dimensional turbulence. Lean and stoichiometric premixtures are considered with a detailed C1-mechanism for methane oxidation. The computed correlation shows the exist...

A new analytical study performed to investigate the effect of the temperature difference between gas and particle in propagation of the spherical flames. The combustible system is containing uniformly distributed volatile fuel particles in an oxidizing gas (Air) mixture. The model includes evaporation of volatile matter of dust particles to known gaseous fuel (methane) and the single-stage reac...

2003
Sandeep Singh Daniel Lieberman Joseph E. Shepherd

Laminar hydrocarbon flames, which have adiabatic flame speeds on the order of a meter per second, are conventionally described by a leading convective-diffusive zone followed by an energyreleasing reactive-diffusive region. On the other hand, combustion induced by a strong shock wave is typically modeled as a convective-reactive balance with negligible diffusion, which may be called a convectiv...

Journal: :Combustion Science and Technology 1993

2013
Douglas G. Talley

Detailed understanding of turbulent combustion in liquid rocket engines (LRE) requires an ability to predict the coupling between the transient features, acoustics, vortex/shear layer dynamics and the unsteady combustion heat release. Conventional and ad hoc models that mimic or match one set of conditions but fail in another test case cannot be used for reliable predictions. This paper present...

2016
Wei-Chieh Hu Shanti Kartika Sari Shuhn-Shyurng Hou Ta-Hui Lin

In this study, methane-ethylene jet diffusion flames modulated by acoustic excitation in an atmospheric environment were used to investigate the effects of acoustic excitation frequency and mixed fuel on nanomaterial formation. Acoustic output power was maintained at a constant value of 10 W, while the acoustic excitation frequency was varied (f = 0-90 Hz). The results show that the flame could...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید