نتایج جستجو برای: maximal cohen macaulay
تعداد نتایج: 98387 فیلتر نتایج به سال:
let $(r,m)$ be a commutative noetherian local ring, $m$ a finitely generated $r$-module of dimension $d$, and let $i$ be an ideal of definition for $m$. in this paper, we extend cite[corollary 10(4)]{p} and also we show that if $m$ is a cohen-macaulay $r$-module and $d=2$, then $lambda(frac{widetilde{i^nm}}{jwidetilde{i^{n-1}m}})$ does not depend on $j$ for all $ngeq 1$, where $j$ is a minimal ...
We introduce a generalization of the notion of depth of an ideal on a module by applying the concept of local cohomology modules with respect to a pair of ideals. We also introduce the concept of $(I,J)$-Cohen--Macaulay modules as a generalization of concept of Cohen--Macaulay modules. These kind of modules are different from Cohen--Macaulay modules, as an example shows. Also an art...
Let $(R,underline{m})$ be a commutative Noetherian local ring and $M$ be a non-zero finitely generated $R$-module. We show that if $R$ is almost Cohen-Macaulay and $M$ is perfect with finite projective dimension, then $M$ is an almost Cohen-Macaulay module. Also, we give some necessary and sufficient condition on $M$ to be an almost Cohen-Macaulay module, by using $Ext$ functors.
We study a variety for graded maximal Cohen–Macaulay modules, which was introduced by Dao and Shipman. The main result of this paper asserts that there are only finite number isomorphism classes modules with fixed Hilbert series over algebras countable representation type.
We consider a commutative ring R graded by an arbitrary abelian group G, and define the grade of a G-homogeneous ideal I on R in terms of vanishing of C̆ech cohomology. By defining the dimension in terms of chains of homogeneous prime ideals and supposing R satisfies a.c.c. on G-homogeneous ideals and has a unique G-homogeneous maximal ideal, we can define graded versions of the depth of R and C...
We consider a class of hypergraphs called hypercycles and we show that a hypercycle $C_n^{d,alpha}$ is shellable or sequentially the Cohen--Macaulay if and only if $nin{3,5}$. Also, we characterize Cohen--Macaulay hypercycles. These results are hypergraph versions of results proved for cycles in graphs.
In this paper, we investigate the maximal Cohen-Macaulay property of tensor products modules, and then give criteria for projectivity modules in terms vanishing Ext modules. One applications shows that Auslander-Reiten conjecture holds normal rings.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید