نتایج جستجو برای: max weak multiplication module
تعداد نتایج: 277211 فیلتر نتایج به سال:
A calyx (multiplicative lattice) is a complete lattice endowed with the structure of a monoid such that multiplication by an element is a left adjoint functor of complete lattices (equivalently, a left adjoint functor which preserves colimits). Calyxes are a generalization of the set of ideals of a ring, which form a complete lattice under intersection and summation; in conjunction with the nat...
The max-plus semiring Rmax is the set R∪{−∞}, equipped with the addition (a, b) 7→ max(a, b) and the multiplication (a, b) 7→ a + b. The identity element for the addition, zero, is −∞, and the identity element for the multiplication, unit, is 0. To illuminate the linear algebraic nature of the results, the generic notations +, , × (or concatenation), 0 and 1 are used for the addition, the sum, ...
All rings are commutative with identity and all modules are unitary. In this note we give some properties of a finite collection of submodules such that the sum of any two distinct members is multiplication, generalizing those which characterize arithmetical rings. Using these properties we are able to give a concise proof of Patrick Smith’s theorem stating conditions ensuring that the sum and ...
let and be banach algebras, , and . we define an -product on which is a strongly splitting extension of by . we show that these products form a large class of banach algebras which contains all module extensions and triangular banach algebras. then we consider spectrum, arens regularity, amenability and weak amenability of these products.
This work is devoted for the design and FPGA implementation of a 16bit Arithmetic module, which uses Vedic Mathematics algorithms. For arithmetic multiplication various Vedic multiplication techniques like Urdhva Tiryakbhyam Nikhilam and Anurupye has been thoroughly analyzed. Also Karatsuba algorithm for multiplication has been discussed. It has been found that Urdhva Tiryakbhyam Sutra is most ...
Invertibility of multiplication modules All rings are commutative with 1 and all modules are unital. Let R be a ring and M an R-module. M is called multiplication if for each submodule N of M, N=IM for some ideal I of R. Multiplication modules have recently received considerable attention during the last twenty years. In this talk we give the de nition of invertible submodules as a natural gene...
Let R be a commutative ring with identity and M be a unital R-module. Then M is called a multiplication module provided for every submodule N of M there exists an ideal I of R such that N = IM. Our objective is to investigate properties of prime and semiprime submodules of multiplication modules. Mathematics Subject Classification: 13C05, 13C13
A new algorithm is proposed for the software implementation of modular multiplication, which uses pre-computations with a constant module. The developed modular multiplication algorithm provides high performance in comparison with the already known algorithms, and is oriented at the variable value of the module, especially with the software implementation on micro controllers and smart cards wi...
We introduce the weak topological centers of left and right module actions and we study some of their properties. We investigate the relationship between these new concepts and the topological centers of of left and right module actions with some results in the group algebras.
We introduce Z-module structures which are extensions of additive loop structure and are systems 〈 a carrier, a zero, an addition, an external multiplication 〉, where the carrier is a set, the zero is an element of the carrier, the addition is a binary operation on the carrier, and the external multiplication is a function from Z× the carrier into the carrier. Let us mention that there exists a...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید