نتایج جستجو برای: max injective module
تعداد نتایج: 115968 فیلتر نتایج به سال:
It is shown that each almost maximal valuation ring R, such that every indecomposable injective R-module is countably generated, satisfies the following condition (C): each fp-injective R-module is locally injective. The converse holds if R is a domain. Moreover, it is proved that a valuation ring R that satisfies this condition (C) is almost maximal. The converse holds if Spec(R) is countable....
The purpose of this paper is to further the study of weakly injective and weakly projective modules as a generalization of injective and projective modules. For a locally q.f.d. module M , there exists a module K ∈ σ[M ] such that K ⊕N is weakly injective in σ[M ], for any N ∈ σ[M ]. Similarly, if M is projective and right perfect in σ[M ], then there exists a module K ∈ σ[M ] such that K ⊕ N i...
The notion of simple-direct-injective modules which are a generalization injective unifies $C2$ and $C3$-modules. In the present paper, we introduce semisimple-direct-injective module gives unified viewpoint $C2$, $C3$, SSP properties modules. It is proved that ring $R$ Artinian serial with Jacobson radical square zero if only every right $R$-module has and, for any family simple $R$-modules $\...
we show that every semi-artinian module which is contained in a direct sum of finitely presented modules in $si[m]$, is weakly co-semisimple if and only if it is regular in $si[m]$. as a consequence, we observe that every semi-artinian ring is regular in the sense of von neumann if and only if its simple modules are $fp$-injective.
An R-module M is called epi-retractable if every submodule of MR is a homomorphic image of M. It is shown that if R is a right perfect ring, then every projective slightly compressible module MR is epi-retractable. If R is a Noetherian ring, then every epi-retractable right R-module has direct sum of uniform submodules. If endomorphism ring of a module MR is von-Neumann regular, then M is semi-...
in this paper, we introduce the notion of $(m,n)$-algebraically compact modules as an analogue of algebraically compact modules and then we show that $(m,n)$-algebraically compactness and $(m,n)$-pure injectivity for modules coincide. moreover, further characterizations of a $(m,n)$-pure injective module over a commutative ring are given.
Let R be a ring and let M be a right R-module with S End MR . M is called almost general quasiprincipally injective or AGQP-injective for short if, for any 0/ s ∈ S, there exist a positive integer n and a left ideal Xsn of S such that s / 0 and lS Ker s Ss ⊕ Xsn . Some characterizations and properties of AGQP-injective modules are given, and some properties of AGQP-injective modules with additi...
It is proven that the weak dimension of each FP-injective module over a chain ring which is either Archimedean or not semicoherent is less or equal to 2. This implies that the projective dimension of any countably generated FP-injective module over an Archimedean chain ring is less or equal to 3. By [7, Theorem 1], for any module G over a commutative arithmetical ring R the weak dimension of G ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید