نتایج جستجو برای: matrix q th root
تعداد نتایج: 651313 فیلتر نتایج به سال:
We show that the action of universal R-matrix of affine U q sl 2 quantum algebra, when q is a root of unity, can be renormalized by some scalar factor to give a well defined nonsingular expression, satisfying Yang-Baxter equation. It reduced to intertwining operators of all representations , corresponding to Chiral Potts, if the parameters of these representations lie on well known algebraic cu...
Let P = f" + (I ,,) , the direct sum of the p x p identity matrix and the negative of the q x q ident ity matrix. The fo llowing theorem is proved. TH EOHEM: If X = cZ where Z is a 4 x 4 P-orthogonal , P-skew-symmetric matrix and Ie I .;;; 2, there exist matrices A an.d B, both of which are P-orthogollal and P-skew-symmetric, sach that X = AB BA. Methods for o btaining certain matrices which sa...
In this paper we present a new method to construct a polynomial u(x) ∈ Z[x] which will make Φk(u(x)) reducible. We construct a finite separable extension of Q(ζk), denoted as E. By primitive element theorem, there exists a primitive element θ ∈ E such that E = Q(θ). We represent the primitive k-th root of unity ζk by θ and get a polynomial u(x) ∈ Q[x] from the representation. The resulting u(x)...
Let R be a commutative ring, q a unit of R and P a multiplicatively antisymmetric matrix with coefficients which are integer powers of q. Denote by SE(q,P) the multiparameter quantum matrix bialgebra associated to q and P. Slightly generalizing [H-H], we define a multiparameter deformation Lλ/μVP of the classical skew Schur module. In case R is a field and q is not a root of 1, arguments like t...
A parity-check matrix for a q -ary repeated-root cyclic code is derived using the Hasse derivative. Then the min imum distance of a q-ary repeated-root cyclic code C is expressecin terms of the min imum distance of a certain simple-root cyclic code C that is determined by C. With the help of this result, several binary repeated-root cyclic codes of lengths up to n = 62 are shown to contain the ...
در این پایان نامه متر های ریشه -mام انیشتینی را مورد بررسی قرار داده و نشان می دهیم که اگر f یک متر انیشتینی ریشه -mام باشد ، یعنی ric=(n -1 ) kf*f که در آن k یک تابع اسکالر می باشد ،آنگاهk=0 لذا ric=0. همچنین این خاصیت را برای متر های ریشه m-ام انیشتن ضعیف شده مورد بررسی قرار می دهیم. لازم به ذکر است مطالب ذکر شده از مقاله زیر است: y. yu and y. you, on einstein m-th...
Transfer matrix functional relations for the generalized τ 2 (t q) model Abstract The N-state chiral Potts model in lattice statistical mechanics can be obtained as a " descendant " of the six-vertex model, via an intermediate " Q " or " τ 2 (t q) " model. Here we generalize this to obtain a column-inhomogeneous τ 2 (t q) model, and derive the functional relations satisfied by its row-to-row tr...
$^{229}$Th is a promising candidate for developing nuclear optical clock and searching the new physics beyond standard model. Accurate knowledge of properties very important. In this work, we calculate hyperfine-structure constants first four states $^{229}$Th$^{3+}$ using relativistic coupled-cluster method based on Gauss basis set. The no-pair Dirac-Coulomb-Breit Hamiltonian with lowest-order...
in the present paper, we propose an iterative algorithm for solving the generalized $(p,q)$-reflexive solution of the quaternion matrix equation $overset{u}{underset{l=1}{sum}}a_{l}xb_{l}+overset{v} {underset{s=1}{sum}}c_{s}widetilde{x}d_{s}=f$. by this iterative algorithm, the solvability of the problem can be determined automatically. when the matrix equation is consistent over...
In the present paper, we propose an iterative algorithm for solving the generalized $(P,Q)$-reflexive solution of the quaternion matrix equation $overset{u}{underset{l=1}{sum}}A_{l}XB_{l}+overset{v} {underset{s=1}{sum}}C_{s}widetilde{X}D_{s}=F$. By this iterative algorithm, the solvability of the problem can be determined automatically. When the matrix equation is consistent over...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید