نتایج جستجو برای: mantle boundary however
تعداد نتایج: 1790765 فیلتر نتایج به سال:
We combine first-principles calculations of forces with the direct nonequilibrium molecular dynamics method to determine the lattice thermal conductivity k of periclase (MgO) up to conditions representative of the Earth's core-mantle boundary (136 GPa, 4100 K). We predict the logarithmic density derivative a=(∂ln k/∂ln ρ)(T)=4.6±1.2 and that k=20±5 Wm(-1) K(-1) at the core-mantle boundary, whi...
The seismic wavefield propagating along the recently instrumented Pacific-North American plate boundary (California) displays remarkable variation, with regional shear waves arriving at coastal stations up to 20 seconds earlier than equidistant stations in eastern California. Broadband modeling of this data reveals that coastal paths sample fast upper mantle typical of Miocene-aged ocean plate ...
We applied global waveform tomography to model radial anisotropy in the whole mantle. We found that in the last few hundred kilometers near the core-mantle boundary, horizontally polarized S-wave velocities (VSH) are, on average, faster (by approximately 1%) than vertically polarized S-wave velocities (VSV), suggesting a large-scale predominance of horizontal shear. This confirms that the D" re...
Mantle control on planetary dynamos is often studied by imposing heterogeneous core-mantle boundary (CMB) heat flux patterns on the outer boundary of numerical dynamo simulations. These patterns typically enter two main categories: Either they are proportional to seismic tomography models of Earth’s lowermost mantle to simulate realistic conditions, or they are represented by single spherical h...
For regions of partial melt in the lower mantle, both compressional and shear wave velocities decrease monotonically with increasing melt volume fraction. It has been observed that regions close to the core-mantle boundary thought to contain partial melt have a velocity decrement ratio (relative change in shear velocity over relative change of compressional velocity) of about 3. This is certain...
The initial melting of mantle plumes produced unparalleled volumes of lava that formed large igneous provinces (LIPs). These events were sometimes so large that they triggered catastrophic mass extinctions and oceanic anoxic events. Global tomography and numerical models suggest that mantle plume occurrences are closely linked to the margins of the large low shear velocity provinces (LLSVPs) lo...
Computer models of mantle convection constrained by the history of Cenozoic and Mesozoic plate motions explain some deep-mantle structural heterogeneity imaged by seismic tomography, especially those related to subduction. They also reveal a 150-million-year time scale for generating thermal heterogeneity in the mantle, comparable to the record of plate motion reconstructions, so that the probl...
Bends in volcanic hotspot lineaments, best represented by the large elbow in the Hawaiian-Emperor chain, were thought to directly record changes in plate motion. Several lines of geophysical inquiry now suggest that a change in the locus of upwelling in the mantle induced by mantle dynamics causes bends in hotspot tracks. Inverse modeling suggests that although deep flow near the core-mantle bo...
[1] The thermal boundary layer beneath continental cratons extends into the Earth’s mantle to depths of at least 200 km. It has been proposed that chemical depletion of the lithospheric mantle during partial melting offsets the effect of increased density from conductive cooling, resulting in neutral buoyancy with respect to the underlying asthenosphere. Mineral compositions of garnet peridotit...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید