نتایج جستجو برای: manifold learning
تعداد نتایج: 628464 فیلتر نتایج به سال:
Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...
Traditional manifold learning algorithms assumed that the embedded manifold is globally or locally isometric to Euclidean space. Under this assumption, they divided manifold into a set of overlapping local patches which are locally isometric to linear subsets of Euclidean space. By analyzing the global or local isometry assumptions it can be shown that the learnt manifold is a flat manifold wit...
The computation of compact and meaningful representations of high dimensional sensor data has recently been addressed through the development of Nonlinear Dimensional Reduction (NLDR) algorithms. The numerical implementation of spectral NLDR techniques typically leads to a symmetric eigenvalue problem that is solved by traditional batch eigensolution algorithms. The application of such algorith...
Many high-dimensional data sets that lie on a lowdimensional manifold exhibit nontrivial regularities at multiple scales. Most work in manifold learning ignores this multiscale structure. In this paper, we propose approaches to explore the deep structure of manifolds. The proposed approaches are based on the diffusion wavelets framework, data driven, and able to directly process directional nei...
Inputs coming from high-dimensional spaces are common in many real-world problems such as a robot control with visual inputs. Yet learning in such cases is in general difficult, a fact often referred to as the “curse of dimensionality”. In particular, in regression or classification, in order to achieve a certain accuracy algorithms are known to require exponentially many samples in the dimensi...
We claim and present arguments to the effect that a large class of manifold learning algorithms that are essentially local will suffer from at least four generic problems associated with (1) noise in the data, (2) curvature of the manifold, (3) dimensionality of the manifold, and (4) the presence of many manifolds with little data per manifold. This analysis suggests non-local manifold learning...
In the past few years, metric learning, semi-supervised learning, and manifold learning methods have aroused a great deal of interest in the machine learning community. Many machine learning and pattern recognition algorithms rely on a distance metric. Instead of choosing the metric manually, a promising approach is to learn the metric from data automatically. Besides some early work on metric ...
For the last decades, manifold learning has shown its advantage of efficient non-linear dimensionality reduction in data analysis. Based on the assumption that informative and discriminative representation of the data lies on a low-dimensional smooth manifold which implicitly embedded in the original high-dimensional space, manifold learning aims to learn the low-dimensional representation foll...
Numerous problems in machine learning are formulated as optimization with manifold constraints. In this paper, we propose the Manifold alternating directions method of multipliers (MADMM), an extension of the classical ADMM scheme for manifold-constrained non-smooth optimization problems and show its application to several challenging problems in dimensionality reduction, data analysis, and man...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید