نتایج جستجو برای: locally compact quantum group
تعداد نتایج: 1405911 فیلتر نتایج به سال:
We prove that a remainder $Y$ of a non-locally compact rectifiable space $X$ is locally a $p$-space if and only if either $X$ is a Lindel"{o}f $p$-space or $X$ is $sigma$-compact, which improves two results by Arhangel'skii. We also show that if a non-locally compact rectifiable space $X$ that is locally paracompact has a remainder $Y$ which has locally a $G_{delta}$-diagonal, then...
Leptin’s theorem asserts that a locally compact group is amenable if and only if its Fourier algebra has a bounded (by one) approximate identity. In the language of locally compact quantum groups—in the sense of J. Kustermans and S. Vaes—, it states that a locally compact group is amenable if and only if its quantum group dual is co-amenable. It is an open problem whether this is true for gener...
Franck Lesieur had introduced in his thesis (now published in an expended and revised version in the Mémoires de la SMF (2007)) a notion of measured quantum groupoid, in the setting of von Neumann algebras and a simplification of Lesieur’s axioms is presented in an appendix of this article. We here develop the notions of actions, crossed-product, and obtain a biduality theorem, following what h...
In this note, we show that cite[Corollary 3.2]{sad} is not always true. In fact, we characterize essential left $phi$-contractibility of the group algebras in terms of compactness of its related locally compact group. Also, we show that for any compact commutative group $G$, $L^{2}(G)$ is always essentially left $phi$-contractible. We discuss the essential left $phi$-contractibility of some Fou...
let $varpi$ be a representation of the homogeneous space $g/h$, where $g$ be a locally compact group and $h$ be a compact subgroup of $g$. for an admissible wavelet $zeta$ for $varpi$ and $psi in l^p(g/h), 1leq p
Let $varpi$ be a representation of the homogeneous space $G/H$, where $G$ be a locally compact group and $H$ be a compact subgroup of $G$. For an admissible wavelet $zeta$ for $varpi$ and $psi in L^p(G/H), 1leq p <infty$, we determine a class of bounded compact operators which are related to continuous wavelet transforms on homogeneous spaces and they are called localization operators.
In ([L2]), Franck Lesieur had introduced a notion of measured quantum groupoid, in the setting of von Neumann algebras. In an annex of [E6], Lesieur’s axioms have been simplified. In this article, we suppose that the basis is central; in that case, we prove that a specific sub-C∗ algebra is, in a sense, invariant under all the data which define the measured quantum group, which allow us to prov...
For a closed cocompact subgroup Γ of a locally compact group G, given a compact abelian subgroup K of G and a homomorphism ρ : K̂ → G satisfying certain conditions, Landstad and Raeburn constructed equivariant noncommutative deformations C∗(Ĝ/Γ, ρ) of the homogeneous space G/Γ, generalizing Rieffel’s construction of quantum Heisenberg manifolds. We show that when G is a Lie group and G/Γ is conn...
We introduce the notion of locally trivial quantum principal bundles. The base space and total space are compact quantum spaces (unital C-algebras), the structure group is a compact matrix quantum group. We prove that a quantum bundle admits sections if and only if it is trivial. Using a quantum version of Čech cocycles, we obtain a reconstruction theorem for quantum principal bundles. The clas...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید