نتایج جستجو برای: local fractional calculus
تعداد نتایج: 645580 فیلتر نتایج به سال:
The principle of local gauge invariance is applied to fractional wave equations and the interaction term is determined up to order o(ḡ) in the coupling constant ḡ. As a first application, based on the RiemannLiouville fractional derivative definition, the fractional Zeeman effect is used to reproduce the baryon spectrum accurately. The transformation properties of the non relativistic fractiona...
In order to solve the local fractional differential equations, we couple residual method with Adomian decomposition via calculus operator. Several examples are given illustrate solution process and reliability of method.
The transfer of heat due to the emission of electromagnetic waves is called thermal radiations. In local fractional calculus, there are numerous contributions of scientists, like Mandelbrot, who described fractal geometry and its wide range of applications in many scientific fields. Christianto and Rahul gave the derivation of Proca equations on Cantor sets. Hao et al. investigated the Helmholt...
In this paper, we apply the local fractional Adomian decomposition and variational iteration methods to obtain the analytic approximate solutions of Fredholm integral equations of the second kind within local fractional derivative operators. The iteration procedure is based on local fractional derivative. The obtained results reveal that the proposed methods are very efficient and simple tools ...
Fractional calculus is the field of mathematical analysis which deals with the investigation and applications of integrals and derivatives of arbitrary order. The purpose of this work is to use Hadamard fractional integral to establish some new integral inequalities of Gruss type by using one or two parameters which ensues four main results . Furthermore, other integral inequalities of reverse ...
In this work, a non-integer order Airy equation involving Liouville differential operator is considered. Proposing an undetermined integral solution to the left fractional Airy differential equation, we utilize some basic fractional calculus tools to clarify the closed form. A similar suggestion to the right FADE, converts it into an equation in the Laplace domain. An illustration t...
The purpose of this paper is to solve fractional calculus of variational Herglotz problem depending on an Atangana-Baleanu fractional derivative. Since the new Atangana-Baleanu fractional derivative is non-singular and non-local, the Euler-Lagrange equations are proposed for the problems of Herglotz. Fractional variational Herglotz problems of variable order are considered and two cases are sho...
Fractional calculus, which has almost the same history as classic calculus, did not attract enough attention for a long time. However, in recent decades, fractional calculus and fractional differential equations become more and more popular because of its powerful potential applications. A large number of new differential equations (models) that involve fractional calculus are developed. These ...
in this paper, we apply the local fractional laplace transform method (or yang-laplace transform) on volterra integro-differential equations of the second kind within the local fractional integral operators to obtain the analytical approximate solutions. the iteration procedure is based on local fractional derivative operators. this approach provides us with a convenient way to find a solution ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید