نتایج جستجو برای: lie higher derivation
تعداد نتایج: 1056914 فیلتر نتایج به سال:
We classify all the pairs of a commutative associative algebra with an identity element and its finite-dimensional commutative locally-finite derivation subalgebra such that the commutative associative algebra is derivation-simple with respect to the derivation subalgebra over an algebraically closed field with characteristic 0. Such pairs are the fundamental ingredients for constructing genera...
In this note we propose a definition of inner derivation for nonassociative algebras. This definition coincides with the usual one for Lie algebras, and for associative algebras with no absolute right (left) divisor of zero. I t is well known that all derivations of semi-simple associative or Lie algebras over a field of characteristic zero are inner. Recent correspondence with N. Jacobson has ...
It is proved that the derivation algebra of a centerless perfect Lie algebra of arbitrary dimension over any field of arbitrary characteristic is complete and that the holomorph of a centerless perfect Lie algebra is complete if and only if its outer derivation algebra is centerless. Key works: Derivation, complete Lie algebra, holomorph of Lie algebra Mathematics Subject Classification (1991):...
Let $mathfrak{L}$ be the Virasoro-like algebra and $mathfrak{g}$ itsderived algebra, respectively. We investigate the structure of the Lie triplederivation algebra of $mathfrak{L}$ and $mathfrak{g}$. We provethat they are both isomorphic to $mathfrak{L}$, which provides twoexamples of invariance under triple derivation.
In this paper, we describe a geometric setting for higher-order lagrangian problems on Lie groups. Using left-trivialization of the higher-order tangent bundle of a Lie group and an adaptation of the classical Skinner-Rusk formalism, we deduce an intrinsic framework for this type of dynamical systems. Interesting applications as, for instance, a geometric derivation of the higher-order Euler-Po...
A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید