Let $(X,d)$ be a compactmetric space and let $K$ be a nonempty compact subset of $X$. Let $alpha in (0, 1]$ and let ${rm Lip}(X,K,d^ alpha)$ denote the Banach algebra of all continuous complex-valued functions $f$ on$X$ for which$$p_{(K,d^alpha)}(f)=sup{frac{|f(x)-f(y)|}{d^alpha(x,y)} : x,yin K , xneq y}