نتایج جستجو برای: gauss method
تعداد نتایج: 1637434 فیلتر نتایج به سال:
The purpose of this paper is to provide a general technique for defining and analyzing smoothing operators for use in multigrid algorithms. The smoothing operators considered are based on subspace decomposition and include point, line, and block versions of Jacobi and Gauss-Seidel iteration as well as generalizations. We shall show that these smoothers will be effective in multigrid algorithms ...
The convergence analysis on the general iterative methods for the symmetric and positive semidefinite problems is presented in this paper. First, formulated are refined necessary and sufficient conditions for the energy norm convergence for iterative methods. Some illustrative examples for the conditions are also provided. The sharp convergence rate identity for the Gauss-Seidel method for the ...
We prove the uniform convergence of the multigrid V -cycle on graded meshes for corner-like singularities of elliptic equations on a bounded domain Ω ⊂ IR. In particular, using some weighted Sobolev space K a (Ω) and the method of subspace corrections with the elliptic projection decomposition estimate on K a (Ω), we show that the multigrid V -cycle converges uniformly for piecewise linear func...
We consider an iterative algorithm in which several components are updated in parallel at each stage. We assume that the underlying iteration mapping is monotone and we show that the speed of convergence is maximized when all components are updated at each iteration.
For Ax = b, it has recently been reported that the convergence of the preconditioned Gauss-Seidel iterative method which uses a matrix of the type P = I + S (α) to perform certain elementary row operations on is faster than the basic Gauss-Seidel method. In this paper, we discuss the adaptive Gauss-Seidel iterative method which uses P = I + S (α) + K̄ (β) as a preconditioner. We present some com...
In this paper we introduce a process we have called “Gauss-Seidelization” for solving nonlinear equations. We have used this name because the process is inspired by the well-known Gauss-Seidel method to numerically solve a system of linear equations. Together with some convergence results, we present several numerical experiments in order to emphasize how the Gauss-Seidelization process influen...
We study Gauss-Kronrod quadrature formulae for the Jacobi weight function «/"'"'(t) = (l-i)Q(l + t)'3 and its special case a = ß = X^ of the Gegenbauer weight function. We are interested in delineating regions in the (a, /3)-plane, resp. intervals in A, for which the quadrature rule has (a) the interlacing property, i.e., the Gauss nodes and the Kronrod nodes interlace; (b) all nodes contained ...
Abstract. In this paper, we study the numerical computation of the errors in linear systems when using iterative methods. This is done by using methods to obtain bounds or approximations of quadratic forms uT A−1u where A is a symmetric positive definite matrix and u is a given vector. Numerical examples are given for the Gauss–Seidel algorithm. Moreover, we show that using a formula for the A–...
properties of the hybrid of block-pulse functions and lagrange polynomials based on the legendre-gauss-type points are investigated and utilized to define the composite interpolation operator as an extension of the well-known legendre interpolation operator. the uniqueness and interpolating properties are discussed and the corresponding differentiation matrix is also introduced. the appli...
The RK5GL3 method is a numerical method for solving initial value problems in ordinary differential equations, and is based on a combination of a fifth-order Runge-Kutta method and 3-point Gauss-Legendre quadrature. In this paper we describe an effective local error control algorithm for RK5GL3, which uses local extrapolation with an eighth-order Runge-Kutta method in tandem with RK5GL3, and a ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید