نتایج جستجو برای: following vehicle

تعداد نتایج: 757748  

2001
H. Raza Ioannou

A, utomatic vehicle following is an important feature of a fully rpartially automated highway system (AHS). The on-board vehicle control system should be able to accept and process inputs from the driver, the infrastructure, and other vehicles, perform diagnostics. and provide the appropriate commands to actuators so that the resulting motion of the vehicle is safe and compatible with the AHS o...

2011
Tom V. Mathew

Car-following behaviour is well studied and analyzed in the last fifty years for homogeneous traffic. However in the mixed traffic, following behaviour is found to vary based on type of lead and following vehicles. In this study, a neural network based model is proposed to predict the following behaviour for different lead and following vehicle-type combinations. Performance of the model is stu...

Objective(s): Neuroprotection is created following the inhibition of angiotensin II type 1 receptor (AT1R). Therefore, the purpose of this research was examining AT1R blockage by candesartan in diffuse traumatic brain injury (TBI). Materials and Methods: Male rats were assigned into sham, TBI, vehicle, and candesartan groups. Candesartan (0.3 mg/kg) or vehicle was administered IP, 30 min post-T...

2010
X. ZHANG P. O. NOACK L. GRANDL M. GEIMER Patrick O. Noack

This paper presents a method to develop a system, which will enable an autonomous agricultural vehicle to follow a leading vehicle with a given lateral and longitudinal offset. With the aid of the RTK GPS systems the position of the leading tractor was obtained every 500 ms with accuracy in the range of centimeters. To provide the target position for the guidance of the following agricultural v...

2015
Mitsuru TANAKA Nobuhiro UNO

A four-layer artificial neural network (ANN) structure was set up in the models and a genetic algorithm (GA) and back-propagation methodology were utilized to customize individual driver's behavior. A number of combinations of the input variables was examined with the R2 values representing the model fitting. This paper concluded that there are significant differences in degrees of contribution...

M. Abdollahzade, R. Kazemi,

Car following process is time-varying in essence, due to the involvement of human actions. This paper develops an adaptive technique for car following modeling in a traffic flow. The proposed technique includes an online fuzzy neural network (OFNN) which is able to adapt its rule-consequent parameters to the time-varying processes. The proposed OFNN is first trained by an growing binary tree le...

Journal: :Journal of Japan Society of Civil Engineers, Ser. D3 (Infrastructure Planning and Management) 2015

Journal: :physiology and pharmacology 0
ali shamsizadeh vahid sheibani kerman neuroscience research center, kerman university of medical sciences, kerman, iran yaghoub fathollahi mohammad javan javad mirnajafi-zadeh mohammad reza afarinesh

previous studies have shown that the receptive field properties, spontaneous activity and spatio-temporal interactions of low-threshold mechanical somatosensory cells in the barrel cortex are influenced by c-fibers. in this study, we examined the effect of c-fiber depletion on response properties of barrel cortex neurons following experience dependent plasticity. methods: in this study, exterac...

2009
P. Petrov

This paper describes the modeling of a two-vehicle convoy and the design of a vehicle following controller that tracks the trajectory of the vehicle ahead with prescribed inter-vehicle distance. Kinematic equations of the system are formulated applying standard robotic methodology. We consider autonomous vehicle following without any information obtained from road infrastructure or communicated...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->