نتایج جستجو برای: fixed point
تعداد نتایج: 681551 فیلتر نتایج به سال:
Existence of fixed point in orthogonal metric spaces has been initiated recently by Eshaghi and et al. [On orthogonal sets and Banach fixed Point theorem, Fixed Point Theory, in press]. In this paper, we introduce the notion of the strongly orthogonal sets and prove a genuine generalization of Banach' fixed point theorem and Walter's theorem. Also, we give an example showing that our main theor...
in this paper, generalized convex contractions on orthogonal metric spaces are stablished in whath might be called their definitive versions. also, we show that there are examples which show that our main theorems are genuine generalizations of theorem 3.1 and 3.2 of cite{r}[ m.a. miandaragh, m. postolache, s. rezapour, textit{approximate fixed points of generalizedconvex contractions},...
begin{abstract} in this paper, we introduce an iterative method for amenable semigroup of non expansive mappings and infinite family of non expansive mappings in the frame work of hilbert spaces. we prove the strong convergence of the proposed iterative algorithm to the unique solution of a variational inequality, which is the optimality condition for a minimization problem. the results present...
Some fixed point theorems and common fixed point theorem in Logarithmic convex structure areproved.
in this article, we apply two new fixed point theorems to investigate the existence of mild solutions for a nonlocal fractional cauchy problem with an integral initial condition in banach spaces.
motivated by samet et al. [nonlinear anal., 75(4) (2012), 2154-2165], we introduce the notions of $alpha$-$phi$-fuzzy contractive mapping and $beta$-$psi$-fuzzy contractive mapping and prove two theorems which ensure the existence and uniqueness of a fixed point for these two types of mappings. the presented theorems extend, generalize and improve the corresponding results given in the literature.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید