نتایج جستجو برای: fe2o3
تعداد نتایج: 3641 فیلتر نتایج به سال:
SiO2 coated γ-Fe2O3 nanocomposite powder has been successfully synthesized by chemical vapor condensation process and its feasibility on hyperthermic application was investigated in this study. The power loss of SiO2 coated γ-Fe2O3 nanocomposite powder which means the magnetic heating effect under alternative magnetic field was much higher than the single phase γ-Fe2O3 nano powder due to the ve...
A simple one-step NaCl-assisted microwave-solvothermal method has been developed for the preparation of monodisperse α-Fe2O3 mesoporous microspheres. In this approach, Fe(NO3)3 · 9H2O is used as the iron source, and polyvinylpyrrolidone (PVP) acts as a surfactant in the presence of NaCl in mixed solvents of H2O and ethanol. Under the present experimental conditions, monodisperse α-Fe2O3 mesopor...
The short lifetime of photogenerated charge carriers of hematite (α-Fe2O3) thin films strongly hindered the PEC performances. Herein, α-Fe2O3 thin films with surface nanowire were synthesized by electrodeposition and post annealing method for photoelectrocatalytic (PEC) water splitting. The thickness of the α-Fe2O3 films can be precisely controlled by adjusting the duration of the electrodeposi...
Silane modified iron (III) oxide (SiFe2O3) nanoparticles reinforced chitosan (CS) nanocomposite membranes were prepared by solcast transformation method. The iron (III) oxide nanoparticles and nanocomposite membranes were investigated by UV (Visible) spectroscopy, FT-IR spectroscopy, XRD, SEM and TEM. The size and shape of iron (III) oxide and Si-Fe2O3 nanoparticles were determined by XRD and T...
A novel nanocomposite consisting of α-Fe2O3, Mn3O4 and reduced graphene oxide (r-GO) has been facilely synthesized through a two-step method: solvothermal reaction for Mn3O4-modified α-Fe2O3 (α-Fe2O3/Mn3O4) and self-assembly process for combining α-Fe2O3/Mn3O4 with r-GO (α-Fe2O3/Mn3O4/r-GO). The morphology and structure of the nanocomposite were characterized by X-ray diffraction (XRD), scannin...
A simple one-step NaCl-assisted microwave-solvothermal method has been developed for the preparation of monodisperse a-Fe2O3 mesoporous microspheres. In this approach, Fe(NO3)3 · 9H2O is used as the iron source, and polyvinylpyrrolidone (PVP) acts as a surfactant in the presence of NaCl in mixed solvents of H2O and ethanol. Under the present experimental conditions, monodisperse a-Fe2O3 mesopor...
A unique hexagonal sheet-shaped NiO/CoO/Fe2O3 composite with irregularly shaped nanoparticles was fabricated for the first time through a simple co-precipitation and hydrothermal method. The NiO/CoO/Fe2O3 composite was characterized by numerous techniques (TEM, HRTEM, PXRD, EDX, ICP-AES, BET, and XPS) to confirm its structure and composition. This structure of the NiO/CoO/Fe2O3 composite may en...
Intrinsic short hole diffusion length is a well-known problem for α-Fe2O3 as a visible-light photocatalytic material. In this paper, a nanodisk morphology was designed to remarkably enhance separation of electron-hole pairs of α-Fe2O3. As expected, α-Fe2O3 nanodisks presented superior photocatalytic activity toward methylene blue degradation: more than 90% of the dye could be photodegraded with...
A novel and simple preparation of amine-modified γ-Fe2O3 nanoparticles is described. The presence of amine groups on the surface, instead of hydroxyl groups, will allow conjugation of biologically active molecules to the iron oxide nanoparticles without the need for a size increasing silica shell. Furthermore, the outer amine-layer increases the temperature of the γ-Fe2O3 to α-Fe2O3 structural ...
Sol-gel thin films containing Fe2o3 were deposited onto glass substrates by the dip-coating method at room temperature. Fe2O3 enriched with the isotope 57Fe was embedded in two kinds of matrices: zinc oxide (ZnO) and silica (SiO2). X-ray diffraction (XRD) was used for morphology and structure determination of the nanostructures and showed that the ZnO exhibit a wurtzite form when the film is an...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید